\(\frac{3^{21}}{2}\)

Tính B-A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2014

           A=1+3+32+33+...+320

         3A=3+32+33+34+...+321

2A=3A-A=(3+32+33+34+...+321)-(1+3+32+33+...+321)

         2A=(3-3)+(32-32)+(33-33)+(34-34)+...+(320-320)+(321-1)

           A=(321-1)/2

           A=321/2-1/2

           A=B-0,5

=>    B-A=0,5

Vậy B-A=0,5

20 tháng 8 2020

a. \(\left(2-\frac{3}{4}\right)^2:\frac{11}{16}=\frac{5}{4}^2.\frac{11}{16}=\frac{25}{16}.\frac{16}{11}=\frac{25}{11}\)

b. \(2^3.\frac{7}{20}+\frac{7}{10}=8.\frac{7}{20}+\frac{7}{10}=\frac{14}{5}+\frac{7}{10}=\frac{7}{2}\)

c. \(\sqrt{3^2+4^2}-\sqrt{1^3+2^3+3^3}=\sqrt{9+16}-\sqrt{1+8+27}\)

\(=\sqrt{25}-\sqrt{36}=5-6=-1\)

d. \(21^3:\left(-7\right)^3=\left(21:\left(-7\right)\right)^3=-3^3=-27\)

a) \(\left(2-\frac{3}{4}\right)^2\div\frac{11}{16}=\left(\frac{5}{4}\right)^2.\frac{16}{11}=\frac{25}{16}.\frac{16}{11}=\frac{25}{11}\)

b) \(2^3.\frac{7}{20}+\frac{7}{10}=8.\frac{7}{20}+\frac{7}{10}=\frac{14}{5}+\frac{7}{10}=\frac{7}{2}\)

c) \(\sqrt{3^2+4^2}-\sqrt{1^3+2^3+3^3}=\sqrt{9+16}-\sqrt{1+8+27}\)

\(=\sqrt{25}-\sqrt{36}=5-6=-1\)

d) \(\frac{21^3}{\left(-7\right)^3}=\frac{9261}{-343}=-27\)

1 tháng 8 2020

spam. cho mình xóa nhaa :3

10 tháng 8 2016

Bài 1:

a)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

b)\(=1008\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=1008\cdot\left(1-\frac{1}{2017}\right)\)

\(=1008\cdot\frac{2016}{2017}\)
\(=\frac{290304}{31}\)
 
 
 
 
10 tháng 8 2016

Bài 2:

a)\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)

\(=\frac{1}{3}-\frac{1}{21}\)

\(=\frac{2}{7}\)

b)\(B=\frac{5}{28}+\frac{5}{70}+...+\frac{5}{700}\)

\(=\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{25.28}\)

\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(=\frac{5}{3}\cdot\frac{6}{28}\)

\(=\frac{15}{14}\)

Bài 3:

a)Đặt \(A=-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}\)

\(=-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)\)

\(=-\left[10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)\right]\)

\(=-\left[10\left(\frac{1}{11}-\frac{1}{55}\right)\right]\)

\(=-\left[10\cdot\frac{4}{55}\right]\)

\(=-\frac{8}{11}\).Thay vào ta có: \(x-\frac{8}{11}=\frac{2}{9}\)

\(\Leftrightarrow x=\frac{94}{99}\)

b)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)

\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)

\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

\(x+1=18\)

\(x=17\)

 

17 tháng 5 2019

a) \(\left(3\frac{1}{2}-2x\right).3\frac{1}{3}=7\frac{1}{3}\)

 \(\left(\frac{7}{2}-2x\right).\frac{10}{3}=\frac{22}{3}\)

  \(\frac{7}{2}-2x=\frac{11}{5}\)

              \(2x=\frac{13}{10}\)

                \(x=\frac{13}{20}\)

Vậy ...

17 tháng 5 2019

b) \(\frac{4}{9}x=\frac{9}{8}-0,125\)

   \(\frac{4}{9}x=1\)

         \(x=\frac{9}{4}\)

Vậy...

18 tháng 2 2017

a ) \(\frac{4}{20}+\frac{16}{42}+\frac{6}{15}+\frac{-3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)

\(=\frac{4}{20}+\frac{8}{21}+\frac{2}{5}-\frac{3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)

\(=\left(\frac{4}{20}+\frac{3}{20}\right)+\left(\frac{8}{21}+\frac{2}{21}-\frac{10}{21}\right)+\left(\frac{2}{5}-\frac{3}{5}\right)\)

\(=\frac{7}{20}+0+\frac{-1}{5}=\frac{7-4}{20}=\frac{3}{20}\)

b ) \(\frac{42}{46}+\frac{250}{186}+\frac{-2121}{2323}+\frac{-125125}{143143}\)

\(=\frac{21}{23}+\frac{-21}{23}+\frac{-125}{143}\)

\(=0+\frac{-125}{143}=-\frac{125}{143}\)

18 tháng 2 2017

bài 2

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
=\(1-\frac{1}{2004}=\frac{2003}{2004}\)

7 tháng 7 2019

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim