Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
31 + 33 + 35 + ... + 32021
Xét dãy số: 1; 3; 5;...; 2021
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2021 - 1) : 2 + 1 = 1011
Vậy A có 1011 hạng tử.
Vì 1011 : 4 = 252 dư 3
Nên nhóm 4 hạng tử liên tiếp của A thành một nhóm thì
A = (31+33+35)+ (37+ 39+311+313)+...+(32007+32009+32011+32013) + (32015+32017+32019+32021)
A = (3 + 27 + 243)+ 36(3+33+35+37) + ...+32006.(3+33+35+37) + 32014.(3 + 33 + 35+ 37)
A = 273 +36.2460+...+ 32006.2460+...+ 32014.2460
A = 273 + 2460.(36+... + 32006 + 32014)
vì 2460 ⋮ 41 mà 273 : 41 = 6 dư 27
Vậy A không chia hết cho 41
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
1)
a) A=3+32+33+34+35+36+....+328+329+330�=3+32+33+34+35+36+....+328+329+330
⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)⇔�=(3+32+33)+(34+35+36)+....+(328+329+330)
⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)⇔�=3(1+3+32)+34(1+3+32)+....+328(1+3+32)
⇔A=3.13+34.13+....+328.13⇔�=3.13+34.13+....+328.13
⇔A=13(3+34+....+328)⋮13(dpcm)⇔�=13(3+34+....+328)⋮13(����)
b) A=3+32+33+34+35+36+....+325+326+327+328+329+330�=3+32+33+34+35+36+....+325+326+327+328+329+330
⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)⇔�=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)
⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)⇔�=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)
⇔A=3.364+....+325.364⇔�=3.364+....+325.364
⇔A=364(3+35+310+....+325)⇔�=364(3+35+310+....+325)
⇔A=52.7(3+35+310+....+325)⋮52(dpcm)
2) A=3+32+33+....+330�=3+32+33+....+330
⇔3A=3(3+32+33+....+330)⇔3�=3(3+32+33+....+330)
⇔3A=32+33+34+....+330+331⇔3�=32+33+34+....+330+331
⇔3A−A=(32+33+34+....+330+331)−(3+32+33+....+330)⇔3�−�=(32+33+34+....+330+331)−(3+32+33+....+330)
⇔2A=331−3⇔2�=331−3
⇔A=331−32⇔�=331−32
Vậy A không phải là số chính phương
Học tốt nha
\(D=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13+13.3^3+...+13.3^9\Rightarrow D⋮13\)
\(D=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40+40.3^4+40.3^8\Rightarrow D⋮40\)
Biểu thức E làm tương tự, ý đầu ghép 3 số với nhau được nhân tử là 91 chia hết 13, ý sau ghép 4 số được nhân tử 820 chia hết 41
\(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9\left(a-b\right)⋮9\)
\(\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=99\left(a-c\right)⋮99\)
Câu sau bạn ghi đề sai nhé, đề đúng phải là ab+cd chia hết 99
\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)⋮99\Rightarrow\overline{ab}+\overline{cd}⋮99\)
\(\overline{abcd}=100\overline{ab}+\overline{cd}=101\overline{ab}-\overline{ab}+\overline{cd}=101\overline{ab}-\left(\overline{ab}-\overline{cd}\right)\)
Mà \(101\overline{ab}⋮101\Rightarrow\overline{ab}-\overline{cd}⋮101\)
\(\overline{abcdef}=10000\overline{ab}+100\overline{cd}+\overline{ef}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{ef}\right)\)
Do \(9999⋮11\) ; \(99⋮11\); \(\overline{ab}+\overline{cd}+\overline{ef}⋮11\Rightarrow\overline{abcdef}⋮11\)
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
A=(1+3+32)+...+(339+340+341)
A= 13.1+...+339(1+3+32)
A=13.1+...+ 339.13
A=[13(1+...+339)] chia hết cho 13
vậy A chia hết cho 13