\(\frac{3}{5}\)

b, CMR A>

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

NM
20 tháng 3 2022

ta có : 

\(\frac{1}{2.3}>\frac{1}{3^2}>\frac{1}{4.3};\frac{1}{3.4}>\frac{1}{4^2}>\frac{1}{4.5}....\)

Tương tự ta sẽ có : 

\(\frac{1}{2^2}+\frac{1}{2.3}+.+\frac{1}{99.100}>A>\frac{1}{2^2}+\frac{1}{3.4}+..+\frac{1}{100.101}\)

hay ta có : 

\(\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}>A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{100}-\frac{1}{101}\)

hay \(\frac{1}{4}+\frac{1}{2}-\frac{1}{100}>A>\frac{1}{4}+\frac{1}{3}-\frac{1}{101}\)

hay ta có : \(\frac{1}{4}+\frac{1}{2}>A>\frac{1}{4}+\frac{1}{3}-\frac{31}{300}\Leftrightarrow\frac{3}{4}>A>\frac{12}{25}\)

vậy ta có điều phải chứng minh

3 tháng 5 2017

a, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{10^2}>\frac{1}{10.11}\)

\(\Rightarrow S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

Vậy S > 9/22

b, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)

\(\Rightarrow S>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)

Vậy S > 9/10

=> C > 1/200 + 1/200 + 1/200 + ...... + 1/200 ( 181 phân số )
=> C > 181/200 > 180/200 = 9/10
<=> C > 9/10

5 tháng 2 2016

a)mk làm bên dưới r,bn kéo xuống mà xem

5 tháng 2 2016

Ta có : \(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

           \(\frac{1}{4^2}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

             ......

            \(\frac{1}{50^2}<\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}>\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}<\frac{12}{25}>\frac{1}{4}\)

Vậy \(A>\frac{1}{4}\)

Ý b làm tương tự 

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm

19 tháng 2 2019

dit me may

20 tháng 2 2019

Người lái xe trước khi đi thấy chỉ còn 3/5 thùng xăng, sợ không đủ nên người đó mua thêm 14 lít xăng nữa. Khi về tới nhà anh thấy chỉ còn 1/3 thùng xăng và tính ra xe tiêu thụ hết 30 lít xăng trong chuyến đi đó. Hỏi thùng xăng chứa bao nhiêu lít xăng?