Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=-1/20+-1/30+-1/42+-1/56+-1/72+-1/90
Tìm Am,
Câu hỏi tương tự Đọc thêm\(A=-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}\right)\)
\(=-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-....-\frac{1}{10}\right)=-\left(\frac{1}{4}-\frac{1}{10}\right)=-\frac{3}{20}\)
A=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
A=1/2-1/10
A=2/5
\(\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
= \(\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
= \(\left(-1\right).\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
= \(\left(-1\right).\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
= \(\left(-1\right).\left(\frac{1}{4}-\frac{1}{10}\right)\)
= \(\left(-1\right).\frac{3}{20}\)
= \(\frac{-3}{20}\)
6323121356214488888888888888888888888888888888888888888888888888888888888888888888
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{4}-\frac{1}{10}=\frac{5}{20}-\frac{2}{20}=\frac{3}{20}\)
-1/20=-1/4*5, -1/30=-1/5*6, -1/42=-1/6*7, -1/56=-1/7*8, -1/72=-1/8*9, -1/90=9*10
=> -1/4*5+-1/5*6 + -1/6*7 + -1/7*8 + -1/8*9 + -1/9*10=-1/4- -1/5 + ..........= -1/4 - -1/10 = -3/20
\(A=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{10}-\frac{1}{10}\right)\)\(=\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0\)
\(A=\frac{11}{22}-\frac{2}{22}\)
\(A=\frac{9}{22}\)