Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuyển đổi \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....=\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-.......+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+.......+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)
\(A=\frac{1}{1}-0+0+0+0+.......+0+0-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Có \(\frac{49}{50}<2\) nên \(A<2\)
GIẢI
A=1/12 +1/22 + 1/32 + ....+ 1/502
A<1+1/1.2+1/2.3+....+1/49.50
A<1+1-1/2+1/2-1/3+...+1/49-1/50
A<2-1/50<2
vậy A<2
\(A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49x50}=1-\frac{1}{50}\)
\(=>A<1-\frac{1}{50}<2\)
\(=>A<2\)
Ta có:
\(\frac{1}{1^2}=1;\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{50^2}<\frac{1}{49.50}\)
=>A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1+\left(1-\frac{1}{50}\right)\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}<2\)
=> A < 2
k nha
A=1/1^2+1/2^2+1/3^2+1/4^2+.....+1/50^2
<1/1.2+1/2.3+1/3.4+1/4.5+.....+1/50.51
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/50-1/51
=1/1-1/51
=50/51
Mà 50/51<2
=>A=........<2
đặt B=1/2.3+1/3.4+...+1/49.50
=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)
từ (1),(2),(3) =>A<2
Ta có
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2};\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3};...;\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
ta có:
1/1^2+1/2^2+...+1/50^2<1+1/1.2+1/2.3+....+1/49.50
A<1-1/2+1/2-1/3+1/49-1/50
A<1-1/50
A<49/50
=>A<2
Ta thấy: 1/22 = 1/2.2 < 1/1.2
Tương tựcó: 1/32 < 1/2.3
1/502 < 1/49.50
Vậy A < 1 + 1/1.2 + 1/2.3 + ... + 1/49.50
A < 1 + 1 - 1/2 + 1/2 - 1/3 + ....+ 1/49 - 1/50
A < 2 - 1/50
Do đó A < 2 (ĐPCM)
Ta có A<1/12+1/1.2+1/2.3+1/3.4+...+1/49.50
A<1+1-1/2+1/2-1/3+1/3-1/4+1/49-1/50
A<2-1/50<2(đpcm)