Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
xem lại đề đi nhé, cậu thiếu dữ kiên rồi. Phải thêm:"số các chữ số 1 và 2 = nhau" thì tớ mới giải được.
Gọi 11...1(2012 c/s 1) là x.
Ta có:11...122...2
=11...100...0+22...2
=11...1.100...0+22...2
=11....1.(99...9+1)+111...1.2
=x(9x+1)+2x
=9x2+x+2x
=9x2+3x
=(3x)2+3x
=3x.3x+3x
=3x.(3x+1)
=>11...122...2 là tích của hai số tự nhiên liên tiếp.
Vậy 11...122...2 là tích của hai số tự nhiên liên tiếp.
11...122...2 ( n số 1; n số 2)
=111....1(n chữ số 1) 00...00(n chữ số 0) + 22...2(n chữ số 2)
=111...1(n chữ số 1) . 100...0(n chữ số 0) +111...1(n chữ số 1) . 2
=11....1(n chữ số 1) (1000....0(n chữ số 0) + 2)
=111....1(n chữ số 1) . 100...02(n-1 chữ số 0)
=11...1 . 3 ( n chữ số 1) . 33...34(n-1 chữ số 3)
=333...3( n chữ số 3) . 33...34(n-1 chữ số 3)
Vậy ..........
vd:
12=3.4
1122=33.34
111222=333.334
11112222=3333.3334
...
=> A=111...(n số 1)222...(n số 2) là tích 2 stn liên tíêp
dặt 111.....1(n số 1)=a=>10^n=9a+1
=>A=a.10^n+2a=a(9a+1)+2a=9a^2+a+2a=9a^2+3a=3a(3a+1)
a=3333.........3(n thửa số 3).33333333..34(n-1 thừa số 3)
hứng tỏ rằng số sau là tích của 2 số tự nhiên liên tiếp:111...1222...2(với n chư số 1 và n chữ số 2)
Ta có : 1111...111222...222(n chữ số 1 và n chữ số 2)
= 111...111 . 100..000 + 222....22(n chữ số 1, n chữ số 0 và n chữ số 2)
= 111...111 .100...000 + 2. 111...111( n chữ số 1 và n chữ số 0)
= 111...111 . ( 100...000 + 2) (n chữ số 1 và n chữ số 0)
= 111....111 . 100...002 ( n chữ số 1 và n chữ số 0)
Vậy....