K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

\(taco\)

\(A=\frac{10^8+1}{10^9+1}\Rightarrow10A=1+\frac{9}{10^9+1}\)

\(B=\frac{10^9+1}{10^{10}+1}\Rightarrow10B=1+\frac{9}{10^{10}+1}\)

\(Vì:\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\Rightarrow10A>10B\Rightarrow A>B\)

23 tháng 1 2019

Ta có:

\(A=\frac{10^8+1}{10^9+1}\Leftrightarrow10A=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=1+\frac{9}{10^9+1}\)

\(B=\frac{10^9+1}{10^{10}+1}\Leftrightarrow10B=\frac{10^{10}+10}{10^{10}+1}=\frac{10^{10}+1+9}{10^{10}+1}=1+\frac{9}{10^{10}+1}\)

Vì \(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)nên \(1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)

\(\Rightarrow10A>10B\)\(\Rightarrow A>B\)

Vậy A>B

23 tháng 4 2020

qua hay

11 tháng 3 2016

=935 nhe bé

9 tháng 4 2017

a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)

=> \(\frac{a+n}{b+n}>\frac{a}{b}\)

Với b>a thì chứng minh tương tự ta được \(\frac{a+n}{b+n}< \frac{a}{b}\)

Với a=b thì chứng minh tương tự ta được \(\frac{a+n}{b+n}=\frac{a}{b}\)

9 tháng 4 2017

cho \(A=\frac{10^{11}-1}{10^{12}-1}\) và \(B=\frac{10^{10}+1}{10^{11}+1}\)

          giải

Ta có 

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

VÌ 10.B > 1  và 10.A < 1 

=>  10.B > 10.A 

=> B > A

vậy A < B