Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{\left(x-z\right)\left(y-x\right)\left(y+z\right)}{xyz}=\frac{y.\left(-z\right).x}{xyz}=-1\)
Ta có : \(B=\frac{x+y}{y}.\frac{z+y}{z}=\frac{x+z}{x}=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Nếu x + y + z = 0
=> x + y = - z
=> z + y = - x
=> z + x = - y
Khi đó : B = \(\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\frac{xyz}{xyz}=-1\)
Nếu x + y + z \(\ne\)0
=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Khi đó \(B=\frac{\left(x+y\right)^3}{x^3}=\frac{\left(2x\right)^3}{x^3}=\frac{2^3.x^3}{x^3}=8\)
Vậy nếu x + y + z = 0 B = - 1
nếu x + y + z \(\ne\)0 thì B = 8
M=(1-z/x)(1-x/y)(1+y/z)
M=[(x-z)/x].[(y-x)/y].[(y+z)/z]
M=y/x . -z/y. x/z(thay x-z=y;y-x=-z;y+z=x)
M=-1
hỏi google
Đề sai rồi phãi là: \(A= ( 1-\frac{z}{x})(1-\frac{x}{y})(1-\frac{y}{z}) \)
\(A=\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{z-y}{z}\right)\)
Từ x-y-z = 0 \(\Rightarrow\) x-z = y
y-x = z
z-y = x
Thay vào A, ta có: \(\left(\frac{y}{x}\right)\left(\frac{z}{y}\right)\left(\frac{x}{z}\right)\)
\(\Rightarrow A = 1 \)