Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/3.7+1/7.11+...+1/19.23 (1)
Nhân cả 2 vế của đẳng thức (1) với 4 ta được:
4S=4/3.7+4/7.11+...+4/19.23
4S=1/3.7+1/7.11+...+1/19.23
4S=1/3-1/7+1/7-1/11+..+1/19-1/23
4S=1/3-1/23
4S=20/69
S =20/69:4
S =5/69
Mọi người ủng hộ mik nha
\(S=\frac{1.4}{3.7.4}+\frac{1.4}{7.11.4}+......+\frac{1.4}{19.23.4}\)
\(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+......+\frac{4}{19.23}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+......+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{20}\right)\)
\(=\frac{1}{4}.\frac{17}{60}=\frac{17}{240}\)
Ta có A = \(\frac{4}{3.7}+\frac{4}{7.11}+..............+\frac{4}{107.111}\)
=> A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.............+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
k nha bạn
4A=\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
4A=\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
4A=\(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
A=\(\frac{12}{37}:4=\frac{12}{37}.\frac{1}{4}=\frac{3}{37}\)
A=1/3*7+1/7*11+..+1/95*99
=> 4A=4/3*7+4/7*11+..+4/95*99
=>4A=1/3-1/7+1/7-1/11+...+1/95-1/99=1/3-1/99=32/99
=>A=8/99
\(=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.......+\frac{4}{95.99}\right)=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{1}{4}.\frac{32}{99}=\frac{8}{99}\)
\(A=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{103.107}\)
\(A=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{103.107}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{103}-\frac{1}{107}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{107}\right)\)
\(A=\frac{1}{4}.\frac{104}{321}\)
\(A=\frac{26}{321}\)
_Chúc bạn học tốt_
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{103}-\frac{1}{107}\)
\(A=\frac{1}{3}-\frac{1}{107}=\frac{104}{321}\)