K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

2mx nha bạn

NV
8 tháng 8 2020

1.

Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)

Khi đó:

\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng

Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)

Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)

2.

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ

\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận

Vậy ĐTHS có 2 tiệm cận

3.

Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{5;-5\right\}\)

Đề bài sai hoặc đáp án sai

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên : A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞) Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên : A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\)) Câu 3: Hàm số y =...
Đọc tiếp

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến

Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên :

A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞)

Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên :

A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\))

Câu 3: Hàm số y = \(\dfrac{x+1}{x-1}\) luôn nghịch biến trên :

A. R B. R\{1} C. (0;+∞) D. (-∞;1);(1;+∞)

Câu 4. Hàm số nào sau đâu nghịch biến trên (1;3) :

A. y = x2-4x+8 B.y =\(\dfrac{x^2+x-1}{x-1}\) C.y =\(\dfrac{2}{3}x^3-4x^2+6x-1\) D. y =\(\dfrac{2x-4}{x-1}\)

Câu 5. Hàm số nào sau đây luôn đồng biến trên R :

A. y = x3+2016 B. y = tanx C. y= x4+x2+1 D. y =\(\dfrac{2x+1}{x+3}\)

Câu 6. Trong các hàm số sau hàm số nào đồng biến trên miền xác định của nó :

A. y = \(\sqrt[3]{x+1}\) B.y = \(\dfrac{\sqrt{x^2+1}}{x^2}\) C. y = \(\dfrac{2x+1}{x+1}\) D. y = sinx

Câu 7. Hà, số y=|x-1|(x2-2x-2) có bao nhiêu khoảng đồng biến :

A.1 B.2 C.3 D.4

Câu 8. Hàm số y = \(\sqrt{2x-x^2}\) nghịch biến trên khoảng nào ?

A. (1;2) B. (1;+∞) C. ( 0;1) D. (0;2)

Câu 9 . Trong các hàm số sau , hàm số nào nghịch biến trên khoảng (0;2) :

A. y = \(\dfrac{x+3}{x-1}\) B. y = x4+2x2+3 C. y= x3-x2+3x-5 D. y= x3-3x2-5

1
7 tháng 8 2018

câu 1 B

câu 2 B

câu 3 D

câu 4 C

câu 5 C

câu 8 A

câu 9 D

a: \(3^{x+1}\cdot3=9^4\)

\(\Leftrightarrow3^{x+2}=3^8\)

=>x+2=8

hay x=6

c: \(\left|x+\dfrac{1}{2}\right|-\dfrac{5}{3}=1\)

=>|x+1/2|=8/3

=>x+1/2=8/3 hoặc x+1/2=-8/3

=>x=13/6 hoặc x=-19/6

Chung  minh rằng :  , ta gọi x là số lần cân ( cân thằng bằng) , x là số tự nhiên ≥  3 ,   , ta luôn tìm 1 đồng bị lỗi qua số  qua số lân cân là x và số đồng tối đa là:   2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x  trong đó luôn tìm được 1 đồng tiền bị lỗi . bài toán  có 13 đồng tiền trong đó có 1 đồng bị lỗi không biết nặng hơn hay nhẹ hơn đồng tiền còn lại...
Đọc tiếp

Chung  minh rằng :  , ta gọi x là số lần cân ( cân thằng bằng) , x là số tự nhiên ≥  3 ,   , ta luôn tìm 1 đồng bị lỗi qua số  qua số lân cân là x và số đồng tối đa là:   

2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x

 

 

trong đó luôn tìm được 1 đồng tiền bị lỗi .

 

cleardot.gifbài toán  có 13 đồng tiền trong đó có 1 đồng bị lỗi không biết nặng hơn hay nhẹ hơn đồng tiền còn lại qua 3 lần cân thăng bằng tìm gia đồng bị lỗi. Lời giải:

Ta đánh đấu từng đồng bằng các số từ 1 đến 13 , ta chia thành 3 nhóm nhóm A là nhóm có số đồng từ số 1 đến số 4 , nhóm B có số đồng từ 5 đến 8 , nhóm C có số đồng từ 9 đến 13 , lần cân thứ nhất: ta cho nhóm A cân với nhóm B nếu cân thằng bằng thì nhóm C sẽ có 1 đồng bị lỗi , ta cho đồng 12 , 13 gia ngoài, cho thêm đồng số 1 vào cùng với đồng số 9 cho lên cân vơi đồng số 11 và đồng số 10 nếu cân thăng bằng thì đồng số 1 2 và đồng số 13 có 1 đồng bị lỗi . Ta cân 1 trong 2 đồng trên vơi bất kể đồng còn lại nào thì có thể tìm gia được đồng bị lỗi, nếu cân lệnh ta gi nhớ xem nhóm nào nặng hơn , vậy là trong 3 đồng 9, 10, 11 có 1 đồng bị lỗi , lần cân thứ 3 ta cho đồng số 10 cân với đồng số 11 nếu cân thăng bằng thì đồng số 9 bị lỗi còn cân lệch thì đồng số 11 và 10 có 1 đồng bị lỗi ta lấy 2 đồng cân vơi nhau và để ý xem đồng nào cùng nặng hoặc cùng nhẹ như nhóm này ở lần cân số 2 là đồng bị lỗi.
Quay chở lại trường hợp cân nhóm A với Nhóm B nếu cân không thăng bằng ta gi nhớ xem nhóm nào nặng hơn. Ta bỏ đồng số 4 của nhóm A và đồng số 7,8 của nhóm B gia ngoài. Cho đồng số 3 sang nhóm B đồng số 6 sang nhóm A . Vậy nhóm A có đồng 1 ,2 ,6 nhóm B có đồng 3 ,5 và đồng số 9 cho thêm vào không bị lỗi. Nếu cân thăng bằng thì 3 đồng 4 ,7,8 có đồng lỗi, ta lấy đồng 7 cân với đồng 8 cũng suy luận như nhóm C là tìm đc đồng bị lỗi. Nếu cân đảo chiều thì đồng 3 hoặc đồng 6 bị lỗi, còn lần cân còn lại tìm gia được đồng nào bị lỗi. Nếu cân vẫn lệch như lần cân số 1 thì 3 đồng 1,2,5 có đồng bị lỗi ta cũng cân đồng số 1 với đồng số 2 như cách cân ở nhóm C có thể tìm gia đồng bị lỗi.

từ dữ niệu bài toán ta có :

 Với 3 lần cân ta cân được tối đa 13 đồng tiền , 

 Với 4 lần cân ta cân được tối đa là 39 đồng tiền ( 1 tuần trc mình nhầm to cái này) vì đơn giản là 39 đông chia thành 13 cân vơi13 , nếu thăng bằng thì 13 đồng còn lại bị lỗi và với 3 lần cân còn lại tìm đc đồng bị lỗi trong 13 đồng như là làm, còn cân lệch thì chia thành 3 nhóm 9,9,8 lấy ghép mỗi bên bên này 4 thì bên kia 5  có 3 khả năng xẩy ra ứng với 3 nhóm có số đồng là 9 hoặc 9, hoặc 8 bị lỗi , nếu 9 đồng bị lỗi thì lại chị làm 3,3,3 khác với bài toán 13 đông xu ta chia đc 3,3,2 do khi cân 2 nhóm số đồng xu cộng lại không thể lẻ đc nhầm tổng quát ở chỗ này

Với 5 lần cân thì ta được số đồng tối đa là 119 , lấy 40 đồng cân với 40 đông , cân thằng bằng thì 39 đông còn lại bị lỗi với 4 lần cân còn lại tìm đc 1 đồng bị lỗi như trên

Với 6 lần cân ta đc số đồng tối đa là 361 đồng lấy 121 cân với 121 đồng nếu cân thằng bằng thì 119 đồng còn lại bị lỗi còn cân lệch thì 242 đồng bị  lỗi cho thêm 1  đồng  không bị lỗi vào ta chia thành 3 nhóm mỗi nhóm có 81 đồng sắp xếp sao cho mỗi bên có 40 hoặc 41 đồng của của lần lượt 2 nhóm trên .

Với 7 lần ta có số đồng tối đa xác định đc là 364+364+361 tổng số là 1089

 với 8 lần cân ta có số đồng tối đa xác định được 1 đồng bị lỗi là : 1093+1093+1089=3275

với 9 lần cân ta luôn được số đồng xu tối đa để tìm được 1 đồng xu bị lỗi là : 3280+3280+3275=9835

 

Tổng hợp lại bài toán với x là số lần cân     x là số tự nhiên x≥  3ta luôn có số đồng tiền tối đa xác định đc qua x lần cân là:  . Thì tìm đc 1 đồng tiền bị lỗi. 2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x

 

1
2 tháng 5 2020

ôi ài thế bạn cho bài dễ hơn đi 

:v

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 1:

\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)

Gọi hoành độ của M là \(x_M\)

Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:

\(f'(x_M)=3x_M^2-6x_M=9\)

\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$

\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)

Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)

Đáp án B

Câu 2:

Gọi hoành độ tiếp điểm là $x_0$

Hệ số góc của tiếp tuyến tại tiếp điểm là:

\(f'(x_0)=x_0^2-4x_0+3\)

Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)

\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)

Khi đó: PTTT là:

\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )

Do đó \(y=3x+4\Rightarrow \) đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 3:

PT hoành độ giao điểm:

\(\frac{2x+1}{x-1}-(-x+m)=0\)

\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)

Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)

\(\Leftrightarrow m^2-6m-3> 0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)

Có 3 giá trị m thỏa mãn.