Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=5^1+5^2+...+5^{100}\)
\(\Rightarrow A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(\Rightarrow6\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow A⋮6\)
\(b,B=2+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(\Rightarrow B=2\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(\Rightarrow7\left(2+...+2^{28}\right)\)
\(\Rightarrow B⋮7\)
\(\frac{5(2^2.3^2)^9.(2^2)^6-2(2^2.3)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
\(=\frac{5.2^{18}.3^{18}.2^{12}-2.2^{28}.3^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
\(=\frac{5.2^{30}.3^{18}-2^{29}.3^{18}}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}(5.2-1)}{2^{28}.2^{18}(5-7.2)}\)
\(=\frac{2.9}{-9}\)
\(=-2\)
Chúc bạn học tốt!
Lời giải:
$A=5+5^2+5^3+....+5^{29}+5^{30}$
$5A=5^2+5^3+5^4+...+5^{30}+5^{31}$
$\Rightarrow 5A-A=5^{31}-5$
$\Rightarrow A=\frac{5^{31}-5}{4}$
2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)
Ta có:
\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)
Từ (1) và (2) ta có:
\(x\inƯC\left(51,68\right)\)
\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)
Vì x > 9 nên x = 17
Vậy số chia là 17
3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh
b,
\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)
Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N
\(2A=2-2^2+2^3-...-2^{30}+2^{31}\\ \Leftrightarrow2A+A=2-2^2+2^3-...-2^{30}+2^{31}+1-2+2^2-...-2^{29}+2^{30}\\ \Leftrightarrow3A=2^{31}+1\\ \Leftrightarrow A=\dfrac{2^{31}+1}{2}\)