K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

ai jai jup

12 tháng 4 2016

ko opit

31 tháng 3 2016

PT trùng phương mà giải dễ thôi đặt t=x2

4 tháng 4 2016

đặt x2=t khi đó phương trình trở thành 9t2-10t+1=0

dùng Vi-Ét và ứng dụng tìm được nghiệm là 1 vầ 1/9

thay lại tìm x

đáp số: x=-1;x=-1/3;x=1/3;x=1

a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)

hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)

\(\Leftrightarrow x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)

\(\Leftrightarrow x^2-9=0\)

=>x=3 hoặc x=-3

2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)

1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)

\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)

\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)

mà \(x^2+x+3>0\forall x\)

nên (x+1)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy: S={-1;-3}

21 tháng 12 2021

Đặt \(\left(x^2-x+1\right)^2=a;x^2=b\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a^2-10ab+9b^2=0\\ \Leftrightarrow a^2-9ab-ab+9b^2=0\\ \Leftrightarrow\left(a-b\right)\left(a-9b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\a=9b\end{matrix}\right.\\ \forall a=b\Leftrightarrow\left(x^2-x+1\right)^2-x^2=0\\ \Leftrightarrow\left(x^2-2x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow x=1\\ \forall a=9b\Leftrightarrow\left(x^2-x+1\right)^2-9x^2=0\\ \Leftrightarrow\left(x^2-4x+1\right)\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

21 tháng 12 2021

a: \(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

16 tháng 8 2020

Em biết làm mỗi ý đầu thôi ạ :(

\(\sqrt{9x^2-6x+1}=4\)

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}=4\)

\(\Leftrightarrow\left|3x-1\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)

Vậy S = { 5/3 ; -1 }

16 tháng 8 2020

bạn kiểm tra lại đề bài câu (b) nhé! mình nghĩ là \(\sqrt{x^2+10x+25}=x+4\) chuẩn hơn

a: ĐKXĐ: x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x>=1/2

\(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)

=>\(\sqrt{2x-1}-2\sqrt{2x-1}+5=0\)

=>\(5-\sqrt{2x-1}=0\)

=>\(\sqrt{2x-1}=5\)

=>2x-1=25

=>2x=26

=>x=13(nhận)

c: \(\sqrt{x^2-10x+25}=2\)

=>\(\sqrt{\left(x-5\right)^2}=2\)

=>\(\left|x-5\right|=2\)

=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

d: \(\sqrt{x^2-14x+49}-5=0\)

=>\(\sqrt{x^2-2\cdot x\cdot7+7^2}=5\)

=>\(\sqrt{\left(x-7\right)^2}=5\)

=>|x-7|=5

=>\(\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

1 tháng 11 2023

\(a,\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\left(đkxđ:x\ge5\right)\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\left(tm\right)\)

\(b,\sqrt{2x-1}-\sqrt{8x-4}+5=0\left(đkxđ:x\ge\dfrac{1}{2}\right)\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow\sqrt{2x-1}=5\\ \Leftrightarrow2x-1=25\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=13\left(tm\right)\)

\(c,\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

\(d,\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

7 tháng 1 2017

a. \(x^4-10x^3+25x^2-36=0\)

=> \(x^3\left(x-3\right)-7x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(x^3-7x^2+4x+12\right)=0\)

=>\(\left(x-3\right)\left[x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)\right]=0\)=> \(\left(x-3\right)\left(x-2\right)\left(x^2-5x-6\right)=0\)

=> \(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x-6\right)=0\)

=>\(\left[\begin{matrix}x=3\\x=2\\x=-1\\x=6\end{matrix}\right.\)

b) \(x^4\) - \(^{9x^2}\) - 24x - 16 = 0

=> \(x^3\left(x-4\right)+4x^2\left(x-4\right)+7x\left(x-4\right)+4\left(x-4\right)=0\)=>\(\left(x-4\right)\left(x^3+4x^2+7x+4\right)=0\)

=> \(\left(x-4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+4\left(x+1\right)\right]=0\)=>\(\left(x-4\right)\left(x+1\right)\left(x^2+3x+4\right)=0\)

=> \(\left(x-4\right)\left(x+1\right)=0\) (vì x^2 + 3x + 4> 0)

=>\(\left[\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

7 tháng 1 2017

a,pt\(\Leftrightarrow\left(x^4-10x^3+25x\right)-36=0\)\(\Leftrightarrow\left(x^2-5x\right)^2-36=0\)

\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x+6\right)=0\)\(\Leftrightarrow\left[\begin{matrix}x^2-5x-6=0\\x^2-5x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(x-6\right)=0\\\left(x-2\right)\left(x-3\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-1,x=6\\x=2,x=3\end{matrix}\right.\)

vậy pt có 4 nghiệm x=(-1,6,2,3)