Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://hoc24.vn/hoi-dap/question/282612.html
thao khảo bạn
\(\text{Δ}=\left[-\left(m+1\right)\right]^2-4\cdot1\cdot m\)
\(=\left(m+1\right)^2-4m\)
\(=\left(m-1\right)^2>=0\forall m\)
=>Phương trình luôn có hai nghiệm
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=x_1x_2-2\left(x_1+x_2\right)+6\)
=>\(\left(m+1\right)^2-2m=m-2\left(m+1\right)+6\)
=>\(m^2+1=m-2m-2+6\)
=>\(m^2+1=-m+4\)
=>\(m^2+m-3=0\)
=>\(m=\dfrac{-1\pm\sqrt{13}}{2}\)
\(m=0\) là okee rồi nè
còn \(x_1=x_2\) thì như sau :
\(\Leftrightarrow x_1-x_2=0\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=0^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)
Tới đây rồi áp dụng cái Vi-ét vào là được m còn lại nhe.
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)
với mọi m => pt có 2 nghiệm phân biệt x1 và x2
theo Viet (điều kiện m > -1/2)
\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)
\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)
dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)
a: Thay m=4 vào phương trình, ta được:
\(x^2-4x+4-1=0\)
=>\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b: \(\text{Δ}=\left(-4\right)^2-4\cdot1\left(m-1\right)\)
\(=16-4m+4=-4m+20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+20>0
=>-4m>-20
=>\(m< 5\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(x_1\left(x_1+2\right)+x_2\left(x_2+2\right)=20\)
=>\(\left(x_1^2+x_2^2\right)+2\left(x_1+x_2\right)=20\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=20\)
=>\(4^2-2\cdot\left(m-1\right)+2\cdot4=20\)
=>-2(m-1)+24=20
=>-2(m-1)=-4
=>m-1=2
=>m=3(nhận)
\(\Delta=1-4m>0\Rightarrow m< \dfrac{1}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)
\(\left(x_1^2+x_2+m\right)\left(x_2^2+x_1+m\right)=m^2-m-1\)
\(\Leftrightarrow\left[x_1\left(x_1+x_2\right)-x_1x_2+x_2+m\right]\left[x_2\left(x_1+x_2\right)-x_1x_2+x_1+m\right]=m^2-m-1\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1+x_2\right)=m^2-m-1\)
\(\Leftrightarrow m^2-m-1=1\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2>\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)