Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(9+\frac{9}{2}+\frac{9}{4}+......+\frac{9}{128}+\frac{9}{256}\)
\(=9\left(1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{128}+\frac{1}{256}\right)\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{128}+\frac{1}{256}\)
=> \(2A=2+1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{128}\)
=> \(2A-A=2-\frac{1}{256}\)
=> \(A=\frac{511}{256}\)
Thay A vào ta có : \(9.\frac{511}{256}=\frac{4599}{256}\)
b ) Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{101.103}\)
\(\Rightarrow A=\frac{5}{2}\left(\frac{5}{1}-\frac{5}{3}+\frac{5}{3}-\frac{5}{5}+....+\frac{5}{101}-\frac{5}{103}\right)\)
\(\Rightarrow A=\frac{5}{2}\left(5-\frac{5}{103}\right)\)
a) = \(\frac{1+2+3+..+11}{3}=\frac{\left(1+11\right)+\left(2+9\right)+..+\left(5+7\right)+6}{3}=\frac{12.5+6}{3}=\frac{66}{3}=22\)
b) A = \(9+\frac{9}{2}+\frac{9}{4}+\frac{9}{8}+...+\frac{9}{128}+\frac{9}{256}\)
2 x A = 18 + 9 + \(\frac{9}{2}+\frac{9}{4}+\frac{9}{8}+...+\frac{9}{128}\)
Lấy 2 x A - A = 18 - \(\frac{9}{256}\)
A = 4599/256
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
Ta có : \(\frac{9}{2}+\frac{9}{4}+\frac{9}{8}+....+\frac{9}{128}+\frac{9}{256}\)
\(=9.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\right)\)
\(=9.\left(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+......+\left(\frac{1}{128}-\frac{1}{256}\right)\right)\)
\(=9.\left(1-\frac{1}{256}\right)\)
\(=9.\frac{255}{256}=\frac{2295}{256}\)