Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko co cau tra loi boi vi ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................9
\(N=99...9400...09=99...9.10^{12}+4.10^{11}+9=\left(10^{10}-1\right)10^{12}+4.10^{11}+9\)\(=10^{22}+4.10^{11}-10^{12}+9=10^{22}-6.10^{11}+9=\left(10^{11}-3\right)^2\)
\(\Rightarrow\sqrt{N}=10^{11}-3\)
N=99..94×10..0+9 ( 10 số 9 và 11 số 0)
N = (99..97-3) (99..7+13)+9
N=99..97 ^2. (10 số 9)
Vậy √N =99..97 (10 số 9)
Câu b ra (15.10^n)-3 nhé, đang xài đt ko gõ công thức được
Câu a hình như là vô hạn dấu căn phải ko? Nếu vô hạn thì em nhớ có một cách làm như sau:
a)Đặt \(a=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{...}}}}>0\)
Bình phương 2 vế lên suy ra \(a^2=6+a\Rightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(L\right)\end{matrix}\right.\)
Vậy a = 3
Em làm đúng không ạ? @Nguyễn Việt Lâm
Công bố:
Ta cần chứng minh số có dạng \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) đều là các số chính phương.
Thật vậy, ta có \(224999...91000...09=224999...91000...000+9=224999...90000...000+10^{n+1}+9\)
n-2 cs 9 n cs 0 n-2 cs 9 n+1 cs 0 n-2 cs 9 n+2 cs 0
\(=224999...9.10^{n+2}+10^{n+1}+9=\left(224000...00+999...9\right).10^{n+2}+10^{n+1}+9\)
n-2 cs 9 n-2 cs 0 n-2 cs 9
\(=\left(224.10^{n-2}+10^{n-2}-1\right).10^{n+2}+10^{n+1}+9=224.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9\)\(=225.10^{2n}-100.10^n+10.10^n+9=\left(15.10^n\right)^2-90.10^n+9\)\(=\left(15.10^n\right)^2-2.15.10^n.3+3^2=\left(15.10^n-3\right)^2\)là số chính phương.
Vậy \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) là số chính phương.
\(\Rightarrowđpcm\)
cậu viết gì vậy??????
kiểu này có mà thánh mới giải đc