Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) 49x2+14x+1=0
=>(7x+1)2=0
= > 7x+1=0
=> 7x=-1
=> x=-\(\dfrac{1}{7}\)
Đặt 8x^2-1=t
\(\Leftrightarrow\left(t+3\right)\left(t-3\right)-\left(t^2-1\right)^2=54\Leftrightarrow t^2-9-\left(t^2-1\right)^2=54\)
Đặt tiếp t^2-1=y
\(y-8-y^2=54\Leftrightarrow y^2-y+62=0\) vô nghiệm
= x13 -(7+1)x12 + (7+1)x11 -(7+1)x10 .... -(7+1)x12 +(7+1)x +8
= x13 -(x+1)x12 + (x+1)x11 -(x+1)x10 .... - (x+1)x2 +(x+1)x +8 ( Vì x=7)
=x13 - x13 - x12 + x12 + x11 - x11 - x11 - ..... -x3 - x2 +x2 +x+8
=x+8=7+8=15
x=7 nen x+1=8
\(A=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+...+x^4+x^3-x^3-x^2+x^2+x-5\)
=x-5
=2
bài 1
a, \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
=\(27y^3+36y^2+12y-27y^3-9y^2-3y+9y^2+3y+1-\left(36y^2+12y+1\right)\)
= 0
phân tích đa thức ->nhân tử:
a)2x2+4x-70
b)x3-5x2+8x-4
c)x2-10+16
rút gọn:
(8x-8x3-10x2+3x4-5):(3x2-2x+1)
Bài 1:
a)2x2+4x-70
=2(x2+2x-35)
=2(x2+7x-5x-35)
=2[x(x+7)-5(x+7)]
=2(x-5)(x+7)
b)x3-5x2+8x-4
=x3-4x2+4x-x2+4x-4
=x(x2-4x+4)-(x2-4x+4)
=(x2-4x+4)(x-1)
=(x-2)2(x-1)
c)x2-10x+16
=x2-2x-8x+16
=x(x-2)-8(x-2)
=(x-8)(x-2)
Bài 2:
\(\frac{8x-8x^3-10x^2+3x^4-5}{3x^2-2x+1}=\frac{\left(x^2-2x-5\right)\left(3x^2-2x+1\right)}{3x^2-2x+1}=x^2-2x-5\)
\(A=2x^4+4x^3-7x^3-14x^2+8x^2+16x\)
\(=2x^2\left(x^2+2x\right)-7x\left(x^2+2x\right)+8\left(x^2+2x\right)\)
\(=\left(2x^2-7x+8\right)\left(x^2+2x\right)\)
\(=x\left(x+2\right)\left(2x^2-7x+8\right)\)
\(B=2x\left(x^2-4x+4-y^2\right)\)
\(=2x\left(\left(x-2\right)^2-y^2\right)\)
\(=2x\left(x-y-2\right)\left(x+y-2\right)\)
\(C=x\left(8y^2+8xy+2x^2-z^2\right)\)
\(=x\left(2\left(4y^2+4xy+x^2\right)-z^2\right)\)
\(=x\left(2\left(x+2y\right)^2-z^2\right)\)
\(=x\left(\sqrt{2}x+2\sqrt{2}y-z\right)\left(\sqrt{2}x+2\sqrt{2}y+z\right)\)
\(D=4a^4+10a^3+6a^2-6a^2-15a-9\)
\(=2a^2\left(2a^2+5a+3\right)-3\left(2a^2+5a+3\right)\)
\(=\left(2a^2-3\right)\left(2a^2+5a+3\right)\)
\(E=4a^3-ab^2+2ab-4a^2\)
\(=a\left(4a^2-b^2\right)-2a\left(2a-b\right)\)
\(=a\left(2a+b\right)\left(2a-b\right)-2a\left(2a-b\right)\)
\(=\left(2a-b\right)\left(2a^2+ab-2a\right)\)
\(F=5a^2-10a-4a+8\)
\(=5a\left(a-2\right)-4\left(a-2\right)\)
\(=\left(5a-4\right)\left(a-2\right)\)
\(G=a\left(2x+3y\right)-\left(2x+3y\right)\)
\(=\left(a-1\right)\left(2x+3y\right)\)
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
ta có :
\(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
\(\Leftrightarrow64x^4-9-\left(64x^4-16x^2+1\right)=22\Leftrightarrow16x^2=32\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\Leftrightarrow16x^2=32\Rightarrow x^2=2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)