Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo ở đây nhé:
https://olm.vn/hoi-dap/question/377835.html
hok tốt!!!
^^
Bài 1:
a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)
=>\(3P=2^{101}-2\)
hay \(P=\dfrac{2^{101}-2}{3}\)
b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)
=>\(6Q=5^{101}+1\)
hay \(Q=\dfrac{5^{101}+1}{6}\)
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
Ta có \(B=1^2+2^2+3^2+.....+98^2\)
\(\Rightarrow B=1.1+2.2+3.3+.....+98.98\)
\(\Rightarrow B=1.\left(2-1\right)+2.\left(3-1\right)+.....+98.\left(99-1\right)\)
\(\Rightarrow B=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(98.99-98\right)\)
\(\Rightarrow B=\left(1.2+2.3+....+98.99\right)-\left(1+2+....+98\right)\)
\(\Rightarrow B=\left(1.2+2.3+...+98.99\right)-\left(\frac{\left(1+98\right).98}{2}\right)\)
\(\Rightarrow B=\left(1.2+2.3+...+98+99\right)-\left(4851\right)\)(1)
Đặt \(M=1.2+2.3+....+98.99\)
\(\Rightarrow3M=1.2.3+2.3.3+......+98.99.3\)
\(\Rightarrow3M=1.2.\left(3+0\right)+2.3.\left(4-1\right)+.....+98.99.\left(100-97\right)\)
\(\Rightarrow3M=\left(1.2.3+0.1.2\right)+\left(2.3.4-1.2.3\right)+.......+\left(98.99.100-97.98.99\right)\)
\(\Rightarrow3M=98.99.100-0.1.2\)
\(\Rightarrow3M=970200-0\)
\(\Rightarrow3M=970200\)
\(\Rightarrow M=\frac{970200}{3}\)
\(\Rightarrow M=323400\)
\(\Rightarrow1.2+2.3+....+98.99=323400\)
Thay \(1.2+2.3+......+98.99\) \(=323400\) Vào (1) ta được:
\(B=323400-4851\)
\(\Rightarrow B=318549\)
Vậy \(B=318549\)
\(B=1.1+2.2+3.3+4.4+5.5+...+98.98\)\(=1.\left(2-1\right)+2.\left(3-1\right)+...+98.\left(99-1\right)\)
\(\left(1.2+2.3+3.4+...+98.99\right)-\left(1+2+...+99\right)\)
\(\Rightarrow a-b=\left(1.2+2.3+...+98.99\right)\)\(-\left[\left(1.2+2.3+...+98.99\right)-\left(1+2+...+98\right)\right]\)\(=1+2+3+...+98\)
Tổng của dãy số trên là : \(a-b=\frac{\left(98+1\right).98}{2}=4851\).
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
=1.4.2.5.....98.101/2.3.3.4.....99.100
=(1.2.3.....97.98)(4.5.....100.101)/(2.3.....99)(3.4.....100)
=1.101/99.3
=101/297
Bạn tuấn anh có thể giải thích rõ cho mik vì sao bạn có thể ra dược bước 1ko?
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+..+0
B=0
C=2^100-(2^99+2^98+2^97+...+1)
đặt D=2^99+2^98+2^97+...+1
=>D=2^100-1
=>C=2^100-(2^100-1)=1
Ta có : B = 12 + 22 + 32 + ...... + 982
= 1.1 + 2.2 + 3.3 + ...... + 98.98
= 1.(2 - 1) + 2.(3 - 1) + ...... + 98.(99 - 1)
= 1.2 - 1 + 2.3 - 2 + ...... + 98.99 - 98
= (1.2 + 2.3 + 3.4 + ....... + 98.99) - (1 + 2 + 3 + ....... + 98)
= 98.99.100/3 - 4851
= 323400 - 4851
= 318549