Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(49.51=\left(50-1\right)\left(50+1\right)=50^2-1^2=2500-1=2499\)
b) \(29.31=\left(30-1\right)\left(30+1\right)=30^2-1^2=900-1=899\)
c) \(101^2=\left(100+1\right)^2=100^2+2.100.1+1^2=10000+200+1=10201\)
d) \(99^2+2.99+1=\left(99+1\right)^2=100^2=10000\)
e) \(\left(10^2+8^2+6^2+4^2+2^2\right)-\left(9^2+7^2+5^2+3^2+1^2\right)\)
\(=10^2-9^2+8^2-7^2+6^2-5^2+4^2-3^2+2^2-1^2\)
\(=\left(10-9\right)\left(10+9\right)+\left(8-7\right)\left(8+7\right)+\left(6-5\right)\left(6+5\right)+\)
\(\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(=10+9+8+7+6+5+4+3+2+1=55\)
f) \(1998^2-1997.\left(1998+1\right)=1998^2-\left(1998-1\right)\left(1998+1\right)\)
\(=1998^2-1998^2+1=1\)
Ta có : x = 1999
\(\Leftrightarrow\)x + 1 = 2000
Thay 2000 = x + 1 vào biểu thức A ta được :
A = x2000 - ( x + 1 )x1999 + ( x + 1 )x1998 - ( x + 1 )x1997 + ... - ( x + 1 )x2 + ( x + 1 )x + 727
A = x2000 - x2000 - x1999 + x1999 + x1998 - x1998 - x1997 + ... - x3 - x2 + x2 + x + 727
A = x + 727
Thay x = 1999 vào A ta được :
A = 1999 + 727 = 2726
Theo đề bài ta có :
\(a+b+c=a^2+b^2+c^2\) ( * )
\(\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow ab+bc+ca=0\left(.\right)\)
Tiếp tục ta có :
\(a+b+c=a^3+b^3+c^3\)
\(\Leftrightarrow\left(a+b+c\right)^3=a^3+b^3+c^3\)
\(\Leftrightarrow a^3+\left[b^3+c^3+3bc\left(b+c\right)+3a\left(b+c\right)\left(a+b+c\right)\right]=a^3+b^3+c^3\)
\(\Leftrightarrow a^3+b^3+c^3+\left(b+c\right)\left(3bc+3a^2+3ab+3ac\right)=a^3+b^3+c^3\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(b+c\right)\left(a+b\right)\left(a+c\right)=a^3+b^3+c^3\)
\(\Leftrightarrow3\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-c\\a=-b\\c=-a\end{matrix}\right.\)
Thay a = -b vào (1) ta được a = b = 0.
Thay vào ( *) ta được c = 1
Tương tự ta thấy trong ba số có 1 số là 1 và hai số còn lại có giá trị là 0.
\(\Leftrightarrow P=1.\)
Bài 1:
Sửa đề: CMR \(x^3+y^3\ge x^2y+xy^2\)
Xét hiệu:
\(x^3+y^3-(x^2y+xy^2)=(x^3-x^2y)-(xy^2-y^3)\)
\(=x^2(x-y)-y^2(x-y)\)
\(=(x^2-y^2)(x-y)=(x+y)(x-y)(x-y)=(x+y)(x-y)^2\)
Vì \(x+y\geq 0, (x-y)^2\geq 0\) với mọi $x,y$ không âm
\(\Rightarrow x^3+y^3-(x^2y+xy^2)=(x-y)^2(x+y)\geq 0\)
\(\Leftrightarrow x^3+y^3\geq x^2y+xy^2\)
Ta có đpcm.
Bài 2:
$111(x-2)$ không nhỏ hơn $1998$, nghĩa là:
\(111(x-2)\geq 1998\)
\(\Leftrightarrow x-2\geq \frac{1998}{111}=18\)
\(\Leftrightarrow x\geq 20\)
Vậy với mọi giá trị $x\in\mathbb{R}$, $x\geq 20$ thì ta có điều cần thỏa mãn.
\(x^2+1998=y^2\)
\(\Rightarrow y^2-x^2=1998\)
\(\left(y-x\right)\left(y+x\right)=1998\)
Thấy y - x và y + x luôn cùng tính chẵn lẻ. Vì tích chúng là chẵn nên cả 2 số đều phải là chẵn, tức tích là bội của 4.
Mà 1998 lại không chia hết cho 4 nên không có x ; y thỏa mãn.
Vậy ....
x2+1998=y2
=>y2-x2=1998
=>(y-x)(y+x)=1998=......
bn tự liệt kê các ước của 1998 ra nhé rồi giải pt tìm x,y thôi (cách này hơi dài)
7200
1
86 mũ 2 - 14 mũ 2 = 7396 - 196
= 7200
1998 mũ 2 - 1997 . (1998 + 1) = 3992004 - 3992003
= 1
Chúc bạn học tốt!