Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A M O
\(\Delta ABC\)cân tại A, \(\widehat{A}=80^o\)suy ra : \(\widehat{B}=\widehat{C}=50^o\)
Vẽ tam giác BCM đều ( M và A thuộc cùng một nửa mặt phẳng bờ BC )
\(\widehat{MCA}=60^o-50^o=10^o\)
\(\Delta AMB=\Delta AMC\)( c.c.c )
suy ra : \(\widehat{AMB}=\widehat{AMC}=60^o:2=30^o\)
\(\Delta OBC=\Delta AMC\)( g.c.g ) suy ra CO = CA do đó \(\Delta COA\)cân
vẽ tam giác đều BCM ( M và A cùng thuộc 1 nửa mặt phẳng bờ BC )
CM được tam giác COA cân tại C
\(\widehat{ACO}=45^o-15^o=30^o\)
\(\widehat{CAO}=\left(180^o-30^o\right):2=75^o\)
\(\widehat{BAO}=90^o-75^o=15^o\); \(\widehat{ABO}=45^o-30^o=15^o\)
Vậy \(\widehat{BAO}=\widehat{ABO}\)suy ra : \(\Delta AOB\)cân tại O
Câu 1:
Xét tam giác AMB và tam giác AMC ta có:
AB = AC (tam giác ABC cân tại A)
ABM = ACM (tam giác ABC cân tại A)
=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)
Câu 2:
a) Ta có: +) AK+KB = AB => KB = AB-AK
+) AH+HC = AC => HC = AC-AH
Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)
=>KB=HC
Xét tam giác BHC và tam giác CKB ta có:
HC=KB (cmt)
HCB=KBC (tam giác ABC cân tại A)
BC là cạnh chung
=>tam giác BHC = tam giác CKB (c.g.c)
=>BH=CK (2 cạnh tương ứng) (dpcm)
Xét tam giác ABH và tam giác ACK ta có:
AB=AC (tam giác ABC cân tại A)
BH=CK (cmt)
AH=AK (gt)
=> tam giác ABH = tam giác ACK (c.c.c)
=> ABH = ACK (2 góc tương ứng) (dpcm)
b) Theo a) tam giác BHC= tam giác CKB
=> HBC=KCB (2 góc tương ứng) hay OBC=OCB
=> Tam giác OBC là tam giác cân tại O (dpcm)
c) Theo b tam giác OBC cân tại O => OB=OC
Theo a góc ABH = góc ACK => KBO= HCO
Xét tam giác OKB và tam giác OHC ta có:
KB=HC (theo a)
KBO=HCO (cmt)
OB=OC (cmt)
=> tam giác OKB = tam giác OHC (c.g.c)
=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)
d) Gọi giao điểm của AO và KH là I
Xét tam giác AKO và tam giác AHO ta có:
AK=AH (gt)
AO là cạnh chung
OK=OH (theo c)
=> tam giác AKO = tam giác AHO (c.c.c)
=> KAO = HAO (2 góc tương ứng) hay KAI=HAI
Xét tam giác KAI và tam giác HAI ta có:
AK=AH (gt)
KAI=HAI (cmt)
AI là cạnh chung
=> tam giác KAI = tam giác HAI ( c.g.c)
=> KI=HI , mà I nằm giữa H và K
=> I là trung điểm của KH hay
AO đi qua trung điểm của KH (dpcm)
A B C O D
Trên nửa mặt phẳng bờ BC chứa điểm A, dựng tam giác đều BCD, nối D với A.
\(\Delta\)BCD đều \(\Rightarrow\)BC=BD=DC và ^BDC=^DBC=^DCB=600.
\(\Delta\)ABC cân tại A \(\Rightarrow\)AB=AC. Mà ^BAC=800 \(\Rightarrow\)^ABC=^ACB=500.
Xét \(\Delta\)BAD và \(\Delta\)CAD có:
AB=AC
AD chung \(\Rightarrow\)\(\Delta\)BAD=\(\Delta\)CAD (c.c.c)
BD=CD
\(\Rightarrow\)^BDA=^CDA (2 góc tương ứng) \(\Rightarrow\)^BDA=^CDA=^BDC/2=600/2=300.
Mà ^CBO=300 \(\Rightarrow\)^CDA=^CBO=300. Lại có: ^ACD=^DCB-^ACB=600-500=100\(\Rightarrow\)^ACD=^OCB=100.
Xét \(\Delta\)CAD và \(\Delta\)COB có:
^CDA=^CBO
DC=BC \(\Rightarrow\)\(\Delta\)CAD=\(\Delta\)COB (g.c.g) \(\Rightarrow CA=CO\)(2 cạnh tương ứng)
^ACD=^OCB
\(\Delta COA\)cân tại C (đpcm)