K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

\(8^x.16^{-2x}=4^5\)

\(\Leftrightarrow2^{3x}.2^{-8x}=2^{10}\)

\(\Leftrightarrow2^{-24x^2}=2^{10}\)

\(\Leftrightarrow-24x^2=10\)

\(\Leftrightarrow x^2=\frac{10}{-24}\)

Mà \(x^2\ge0\)nên pt vô nghiệm

11 tháng 11 2015

\(\frac{2^8.9^4}{6^4.8^2}=\frac{2^8.\left(3^2\right)^4}{\left(2.3\right)^4.\left(2^3\right)^2}=\frac{2^8.3^8}{2^4.3^4.2^6}=\frac{1.3^4}{1.1.1}=81\)

7 tháng 7 2017

Ta có:

5x+5x-2=650\(\Rightarrow\)5x.(1+52)=650\(\Rightarrow\)5x.26=650\(\Rightarrow\)5x=25\(\Rightarrow\)x=2

2.52x-1-1=249\(\Rightarrow\)2.52x-1=250\(\Rightarrow\)52x-1=125=53\(\Rightarrow\)2x-1=3\(\Rightarrow\)x=2

3.8x-1=48\(\Rightarrow\)8x-1=16(loại)

16x-5-5=251\(\Rightarrow\)16x-5=256=162\(\Rightarrow\)x-5=2\(\Rightarrow\)x=7

7 tháng 7 2017

Ta có : 5x - 5x - 2 = 650

=> 5x(1 + 52) = 650

=> 5x . 26 = 650

=> 5x = 25

=> 5x = 52 

=> x = 2

10 tháng 6 2017

Bài 1:

a)

\(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\\ =\dfrac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^{2\cdot2}\cdot5^{2\cdot2}+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4}{2^3\cdot5^2}+\dfrac{2^5\cdot5^3}{2^3\cdot5^2}\\ =2\cdot5^2+2^2\cdot5\\ =2\cdot25+4\cdot5\\ =50+20\\ =70\)

c)

\(\dfrac{\left(1-\dfrac{4}{9}-2\right)\cdot16}{\left(2-3\right)^{-2}}+12\\ =\dfrac{\left(\dfrac{9}{9}-\dfrac{4}{9}-\dfrac{18}{9}\right)\cdot16}{\left(-1\right)^{-2}}+12\\ =\dfrac{\dfrac{-13}{9}\cdot16}{\dfrac{1}{\left(-1\right)^2}}+12\\ =\dfrac{\dfrac{-208}{9}}{1}+12\\ =\dfrac{-208}{9}+12\\ =\dfrac{-208}{9}+\dfrac{108}{9}\\ =\dfrac{100}{9}\)

Bài 2:

a)

\(\left(x+2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)

b)

\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-\dfrac{1,78^x}{1,78^x}=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-1=0\\ \Leftrightarrow \dfrac{1,78^{2x-2}}{1,78^x}=1\\ \Leftrightarrow1,78^{2x-2}=1,78^x\\ \Leftrightarrow2x-2=x\\ \Leftrightarrow2x-x=2\\ \Leftrightarrow x=2\)

10 tháng 6 2017

d) \(5^{\left(x-2\right)\left(x+3\right)}=1\)

\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy \(x_1=-3;x_2=2\)

27 tháng 9 2019

mk ko biet

27 tháng 9 2019

1) 46

2) 460 

3) 816

4) 1610

5) 328

22 tháng 7 2019

1) Tìm số nguyên x, biết : 

a) 3= 94/ 273

3x = 1/3

3x = 3-1

=> x = -1

b) 3x = 98 / 273 . 812

3x = 37.38

3x = 315

=> x = 15

c) 2x - 3 / 410 = 83

2x - 3  = 83.410

2x - 3 = 226

=> x - 3 = 26

=> x = 29

d) 22x - 3 / 410 = 83 . 165

 22x - 3 / 410 = 269

 22x - 3 = 269 . 410

22x - 3 = 289

=> 2x - 3 = 89

2x = 91

x = 91/2

e) 35 / 3x = 310

3x = 3: 310

3x = 3-5

=> x = -5

22 tháng 7 2019

\(4x^4-21x^2y^2+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2\)

\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)

23 tháng 7 2019

\(x^5-5x^3+4x\)

\(=x\left(x^4-5x^2+4\right)\)

\(a,4x^4-21x^2y^2+y^4=\left(2x^2\right)^2+4x^2y^2+y^4-4x^2y^2-21x^2y^2\)

\(=\left(2x^2+y^2\right)^2-25x^2y^2\)

\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)

\(b,x^5-5x^3+4x=x\left(x^4-5x^2+4\right)\)

\(=x\left(x^4-4x^2-x^2+4\right)\)

\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]\)

\(=x\left(x^2-4\right)\left(x^2-1\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

\(c,x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)

\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x^2+3x+3x+9\right)\)

\(=\left(x-1\right)\left[x\left(x+3\right)+3\left(x+3\right)\right]\)

\(=\left(x-1\right)\left(x+3\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

\(d,x^{16}+x^8-2=x^{16}+2x^8-x^8-2\)

\(=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)

\(=\left(x^8-1\right)\left(x^8+2\right)\)