Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(\left(-7\right).A=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}+\left(-7\right)^{2008}\)
=> \(A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)
=> \(8A=-7-7^{2008}\) => \(A=-\frac{7+7^{2008}}{8}\)
b) \(A=\left(\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right)+...+\left(\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right)\) ( Chia thành 2007 : 3 = 669 nhóm 3 số)
\(A=\left(-7\right).\left(1+\left(-7\right)+\left(-7\right)^2\right)+...+\left(-7\right)^{2005}.\left(1+\left(-7\right)+\left(-7\right)^2\right)\)
\(A=\left(-7\right).43+...+\left(-7\right)^{2005}.43=43.\left(\left(-7\right)+...+\left(-7\right)^{2005}\right)\)chia hết cho 43
Vậy A chia hết cho 43
A= (- 7) + (-7)^2+ … + (- 7)^2006 + (- 7)^2007
<=> -7A = (-7)^2+ … + (- 7)^2006 + (- 7)^2008
A-(- 7A )= (- 7) + (-7)^2+ … + (- 7)^2006 + (- 7)^2007-{(-7)^2+ … + (- 7)^2006 + (- 7)^2008}
<=> 8A = -7 - (- 7)^2008 = -7 + 7^2008 = 7^2008 - 7
<=> A = (7^2008 - 7)/8 .
Ta thấy \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)
\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(A=-7.\left[1+\left(-7\right)+49\right]+\left(-7\right)^4.\left[1+\left(-7\right)+49\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+49\right]\)
\(A=-7.43+\left(-7\right)^4.43+...+\left(-7\right)^{2005}.43\)
\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2005}\right]⋮43\)
Vậy A chia hết cho 43.
\(A=\left(-7\right)+\left(-7\right)^2+....+\left(-7\right)^{2007}\)
\(A=-\left(7+7^2+...+7^{2007}\right)\)
\(7A=-\left(7^2+7^3+....+7^{2008}\right)\)
7A-A=6A= 72008- 7
=> A= \(\frac{7^{2008}-7}{6}\)
Mình làm vậy ko biết có đúng ko nữa
Sửa đề: Tính tổng:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}...\)
Giải:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)
\(\Rightarrow-7A=-7\)\(\left[\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2008}\)
\(\Rightarrow A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)
\(\Rightarrow8A=-7+7^{2008}\Rightarrow A=\dfrac{-7+7^{2008}}{8}\)
Vậy \(A=\dfrac{-7+7^{2008}}{8}\)
_____________________________________
Ta có:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+...+\left(-7\right)^{2005}.43\)
\(=43.\left[\left(-7\right)+...+\left(-7\right)^{2005}\right]⋮43\) (Đpcm)
A = 1 . (-7) + (-7) . (-7) + (-7) . \(^{\left(-7\right)^2}\)\(+....+1.\left(-7\right)^{2005}+\left(-7\right).\left(-7\right)^{2005}+\left(-7\right)^2.\left(-7\right)^{2005}\)
\(A=\left(-7\right).\left(1+\left(-7\right)+\left(-7\right)^2\right)+...+\left(-7\right)^{2005}.\left(1+\left(-7\right)+\left(-7\right)^2\right)\)
\(A=\left(-7\right).43+....+\left(-7\right)^{2005}.43\)
\(A=43.\left(\left(-7\right)+.....+\left(-7\right)^{2005}\right)\)chia hết cho 43
Vậy A chia hết cho 43
Bài 2:
Ta có: \(\frac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}\)\(=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}\)\(\frac{1}{2^6}=\frac{1}{64}\)
Chúc hk tốt nha!!!