Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) = \(\frac{3}{5}\)
2) =\(\frac{6}{7}\)
3)\(\frac{9}{13}\)
4)\(\frac{4}{13}\)
Theo đề ra, ta có:
\(\frac{a}{b}=\frac{9}{7}\Rightarrow\frac{a}{9}=\frac{b}{7}\)
\(\frac{b}{c}=\frac{7}{3}\Rightarrow\frac{b}{7}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{-15}{5}=-3\)
\(\Rightarrow a=\left(-3\right).9=-27\)
\(\Rightarrow b=\left(-3\right).7=-21\)
\(\Rightarrow c=\left(-3\right).3=-9\)
a) 7x - 2x = 617 : 615 + 44
=> 5x = 36 + 44
=> 5x = 80
=> x = 80 : 5 = 16
b) 9x - 1 = 18 + 1/9 - 1/9 - 9
=> 9x - 1 = 9
=> x - 1 = 1
=> x = 1 + 1 = 2
c) [(6x - 39) : 7] . 4 = 12
=> (6x - 39) : 7 = 12 : 4
=> (6x - 39) : 7 = 3
=> 6x - 39 = 3.7
=> 6x - 39 = 21
=> 6x = 21 + 39
=> 6x = 60
=> x = 60 : 6
=> x = 10
d) 2 - (x - 1) - 3x = 20
=> 2 - x + 1 - 3x = 20
=> 3 - 4x = 20
=> 4x = 3 - 20
=> 4x = -17
=> x = -17 : 4 = -17/4
e) 2|x - 3| + 7 = 56 : 52
=> 2|x - 3| + 7 = 625
=> 2|x - 3| = 625 - 7
=> 2|x - 3| = 618
=> |x - 3| = 618 : 2
=> |x - 3| = 309
=> \(\orbr{\begin{cases}x-3=309\\x-3=-309\end{cases}}\)
=> \(\orbr{\begin{cases}x=312\\x=-306\end{cases}}\)
X2-\(\frac{7}{9}\)X=0 <=> X(X-\(\frac{7}{9}\))=0
=> x=0 hoặc x-\(\frac{7}{9}\)=0
x-\(\frac{7}{9}\)=0 <=>X=0+\(\frac{7}{9}\)=\(\frac{7}{9}\)
=> X=0 hoặc \(\frac{7}{9}\)
ĐKXĐ : 2x \(\ge\)0 <=> x \(\ge\)0
| 7 + x | = 2x <=> \(\orbr{\begin{cases}7+x=2x\\7+x=-2x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=\frac{-7}{3}\end{cases}}\)( KTMĐK)
Vậy x = 7
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
\(\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(x+\frac{1}{5}=\frac{3}{5}\)
\(x=\frac{3}{5}-\frac{1}{5}\)
\(x=\frac{2}{5}\)
vậy \(x=\frac{2}{5}\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(x+\frac{1}{5}=\frac{3}{5}\)
\(x=\frac{3}{5}-\frac{1}{5}\)
\(x=\frac{2}{5}\)
<=> 7.( 12 - x ) = 9. ( 15 - x )
<=> 84 - 7x = 135 - 9x
<=> 84 - 7x - ( 135 - 9x ) =0
<=> 84 - 7x - 135 + 9x = 0
<=> 2x - 51 = 0
<=> 2x = 51 <=> x = 51/2 = 25,5
7/15 - x = 9/12 - x
So sánh 7/15 và 9/12
7/15 < 9/12 => ta có :
9/12 - 7/15 = 17/60
=> Khi 7/15 trừ đi số nào thì 17/60 cộng thêm số đó