K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
17 tháng 8 2021

a.\(n^4+4=n^4+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)

nguyên tố nên thừa số nhỏ hơn là \(n^2-2n+2=1\Leftrightarrow\left(n-1\right)^2=0\Leftrightarrow n=1\)thỏa mãn đề bài

b. ta có :\(n^{1994}+n^{1993}+1-\left(n^2+n+1\right)=\left(n^{1992}-1\right)\left(n^2+n\right)\)

mà \(1992⋮3\Rightarrow n^{1992}-1⋮n^3-1⋮n^2+n+1\)

nên \(n^{1994}+n^{1993}+1⋮n^2+n+1\)mà nó là số nguyên tố nên

\(n^2+n+1=1\Leftrightarrow n=0\) ( Do n là số tự nhiên nên n= -1 loại bỏ đi )

5 tháng 8 2015

1) n+ 4 = (n+ 4n+ 4) - 4n= (n2 + 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1 \(\ge\) 1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

5 tháng 8 2015

mấy bn này toàn bình luận, trong khi đó bài mk...

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
3 tháng 1 2019

a.

\(n^4+4=n^4+4n^2+4-4n^2\)

\(=\left(n^2+2\right)-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)

Mà n4 + 4 là số nguyên tố

Lại có: \(n^2-2n+2< n^2+2n+2\)

\(\Rightarrow n^2-2n+2=1\)

\(\Rightarrow\left(n-1\right)^2=0\Leftrightarrow n=1\)

b.

\(n=0\Leftrightarrow n^{1994}+n^{1993}+1=1\) (loại)

\(n=1\Leftrightarrow n^{1994}+n^{1993}+1=1+1+1=3\) (thoả mãn)

\(n>1\Rightarrow\left(n^{1994}+n^{1993}+1\right)⋮\left(n^2+n+1\right)\ge7\)

Vậy n = 1

7 tháng 1 2019

Thanks nhé

1 tháng 2 2021

bạn fuck boy hơi gấu đó

16 tháng 8 2015

A = n2. ( n2013 - 1) + n.(n2013 - 1) + ( n+ n + 1)

Áp dụng hằng đẳng thức an - b= (a - b). ( an-1 + an-2.b + an-3.b+ ...+a.bn-2 + bn-1)

Ta có: n2013 - 1 = (n3)671 - 1 = (n3 - 1). C  (đặt C là đa thức của n) = (n - 1).(n2 + n + 1). C

=> n2013 - 1 chia hết cho n+ n + 1

=>  n2;  ( n2013 - 1);  n.(n2013 - 1) ; ( n+ n + 1) đều chia hết n2 + n + 1 

=> A chia hết cho n+ n + 1 hay n+ n + 1 là 1 ước của A

Để A là số nguyên tố <=> n2 + n + 1 = 1 hoặc A = n2 + n + 1

+) Nếu n+ n + 1 = 1 <=> n+ n = 0 <=> n (n + 1) = 0 <=> n = 0 Vì n là số tự nhiên => A = 1 không là số nguyên tố => Loại

+) Nếu n+ n + 1 = n2015 + n2014 + 1 <=> n.(n + 1) = n2014.( n + 1) <=> n.(n +1). (1 - n2013) = 0 

<=> n = 0 hoặc n2013 = 1 <=> n = 0 hoặc n = 1 Vì n là số tự nhiên; n = 0 loại

Vậy với n = 1 thì A .............

30 tháng 3 2024

A = n2. ( n2013 - 1) + n.(n2013 - 1) + ( n+ n + 1)

Ta có: n2013 - 1 = (n3)671 - 1 = (n3 - 1). C  (đặt C là đa thức của n) = (n - 1).(n2 + n + 1). C

=> n2013 - 1 chia hết cho n+ n + 1

=>  n2;  ( n2013 - 1);  n.(n2013 - 1) ; ( n+ n + 1) đều chia hết n2 + n + 1 

=> A chia hết cho n+ n + 1 hay n+ n + 1 là 1 ước của A

Để A là số nguyên tố <=> n2 + n + 1 = 1 hoặc A = n2 + n + 1

+) Nếu n+ n + 1 = 1 <=> n+ n = 0 <=> n (n + 1) = 0 <=> n = 0 Vì n là số tự nhiên => A = 1 không là số nguyên tố => Loại

+) Nếu n+ n + 1 = n2015 + n2014 + 1 <=> n.(n + 1) = n2014.( n + 1) <=> n.(n +1). (1 - n2013) = 0 

<=> n = 0 hoặc n2013 = 1 <=> n = 0 hoặc n = 1 Vì n là số tự nhiên; n = 0 loại

Vậy với n = 1 thì A .............