K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

\(\left(x-2016\right)^2\ge0\Rightarrow A_{min}=0+2017=2017\)khi đó : \(\left(x-2016\right)^2=0\Rightarrow x-2016=0\Rightarrow x=2016\)

Vậy \(A\)đạt giá trị nhỏ nhất là 2017 khi x=2016

Chúc bạn học giỏi,

2 tháng 5 2017

Bài 1:

a, Ta có: (x - 1)2 \(\ge\)0 với mọi x

=> A = (x - 1)2 + 2016 \(\ge\)2016 

Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1

Vậy GTNN của A = 2016 tại x = 1

b, Ta có: |x + 4| \(\ge\)0 với mọi x

=> B = |x + 4| + 2017 \(\ge\)2017

Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4

Vây GTNN của B = 2017 tại x = -4

Bài 2:

a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x

=> P = 2010 - (x + 1)2016 \(\ge\)2010

Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1

Vậy GTLN của P = 2010 tại x = -1

b, Ta có: |3 - x| \(\ge\)0 với mọi x

=> Q = 2010 - |3 - x| \(\ge\)2010

Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3

Vậy GTLN của Q = 2010 tại x = 3

11 tháng 1 2018

Vì (x+5)^2016 và |y+1|^2017 đều >= 0 => B >= 0+0-10 = -10

Dấu "=" xảy ra <=> x+5=0 và y+1=0 <=> x=-5 và y=-1

Vậy GTNN của B = -10 <=> x=-5 và y=-1

Tk mk nha

Do |x+2015| lớn hoặc = 0 với mọi x nên A bé hơn hoặc bằng -2016

Dấu "=" xảy ra khi và chỉ khi x+2015=0

=> x=-2015

25 tháng 2 2019

Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\) 

\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )

            b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN

Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )

\(\Rightarrow GTNN\) của B = 25

Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN

Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN

Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\)  của \(\left|x+5\right|=0\)( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\)  của\(\left(n-1\right)^2=0\)( khi đó n = 1)

Vậy GTNN của C bằng  25

27 tháng 2 2019

Câu 1 : a ) Ta có : A=|x32|0 

GTNN của A=0( khi đó x = 32 )

            b) Để B đạt GTNN thì |x+2| đạt GTNN

Ta có : |x+2|0GTNN của |x+|=0( khi đo x = -2 )

GTNN của B = 25

Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN

Mà |x|0GTNN của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì |x+5| đạt GTNN

Mà |x+5|0GTNN  của |x+5|=0( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì (n1)2 đạt GTNN

Mà (x1)20GTNN  của(n1)2=0( khi đó n = 1)

Vậy GTNN của C bằng  25

18 tháng 2 2016

\(\left(x-3\right)^2+\left|y+5\right|^2-4\ge-4\)

=> GTNN của biểu thức là -4

<=> x - 3 = y + 5 = 0

<=> x = 0 + 3; y = 0 - 5

<=> x = 3; y = -5.

14 tháng 8 2023

A = 235 \(\times\) 106 - 24255 : ( 240 - a) 

Với a - 9 ta có: 

A = 235 \(\times\) 106 - 24255 : ( 240 - 9)

A = 24910  - 24255 : 231

A = 24910 - 105

A = 24805

b, A = 235 \(\times\) 106 - 24255 : (240 - a)

    A = 24805 - \(\dfrac{24255}{240-a}\) ( a \(\ne\) 240)

   Amin ⇔ \(\dfrac{24255}{240-a}\)  max 

24255 > 0 ⇒ \(\dfrac{24255}{240-a}\) max ⇔ 240 -  a = 1 ⇒ a = 239 

Vậy Amin = 24805 - 24255 = 550 ⇔ a = 239 

 

6 tháng 1

2025 giồi



























30 tháng 7 2018

Vì /x-2106/ >= 0

=> /x-2016/+2015 >= 2015

=> Min = 2015 <=> x = 2016