Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left|7-2x\right|+7=2x\)
=>\(\left|2x-7\right|+7=2x\)
=>\(\left|2x-7\right|=2x-7\)
=>2x-7>=0
=>\(x>=\dfrac{7}{2}\)
b: \(\left|1-x\right|=4x+1\)
=>\(\left|x-1\right|=4x+1\)
=>\(\left\{{}\begin{matrix}4x+1>=0\\\left(4x+1\right)^2=\left(x-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1\right)^2-\left(x-1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1-x+1\right)\left(4x+1+x-1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\5x\left(3x+2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
c: \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|3,2+\dfrac{2}{5}\right|\)
=>\(\left|x-\dfrac{1}{3}\right|=\dfrac{16}{5}+\dfrac{2}{5}-\dfrac{4}{5}=\dfrac{14}{5}\)
=>\(\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{14}{5}\\x-\dfrac{1}{3}=-\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{42+5}{15}=\dfrac{47}{15}\\x=-\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{-42+5}{15}=-\dfrac{37}{15}\end{matrix}\right.\)
d: \(\left|x-7\right|+2x+5=6\)
=>\(\left|x-7\right|=6-2x-5=-2x+1\)
=>\(\left\{{}\begin{matrix}-2x+1>=0\\\left(-2x+1\right)^2=\left(x-7\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1+x-7\right)\left(2x-1-x+7\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(3x-8\right)\left(x+6\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{8}{3}\left(loại\right)\\x=-6\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)
e: 3x-|2x-1|=2
=>|2x-1|=3x-2
=>\(\left\{{}\begin{matrix}3x-2>=0\\\left(3x-2\right)^2=\left(2x-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2\right)^2-\left(2x-1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2-2x+1\right)\left(3x-2+2x-1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-1\right)\left(5x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x-1=0\\5x-3=0\end{matrix}\right.\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x=1\left(nhận\right)\\x=\dfrac{3}{5}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\frac{-14}{5}\right|\)
\(\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\-\frac{5}{3}\end{cases}}}\)
Vậy...
b) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{2}{4}\)
\(\Rightarrow\dfrac{1}{4}:x=-\dfrac{1}{10}\)
\(\Rightarrow x=\dfrac{1}{4}:\left(-\dfrac{1}{10}\right)\)
\(\Rightarrow x=-\dfrac{3}{2}\)
a. \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{16}{5}+\frac{2}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{14}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\frac{14}{5}-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{5}{3}\end{cases}.}\)
Vậy \(x\in\left\{-\frac{5}{3};\frac{7}{3}\right\}.\)
b. \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}\times\left(x-7\right)^{10}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}.}\)Xét 2 trường hợp:
- \(\left(x-7\right)^{x+1}=0\)\(\Leftrightarrow x-7=0\Leftrightarrow x=7.\)
- \(1-\left(x-7\right)^{10}=0\Leftrightarrow\left(x-7\right)^{10}=1\Leftrightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)\(\Leftrightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=6\end{cases}.}}\)
Vậy \(x\in\left\{6;7;8\right\}.\)
-1.45
SAI RỒI ĐÁP ÁN ĐÚNG LÀ \(\dfrac{1251}{20}\)