K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

\(\left(\frac{6x^2+8x+7}{x^3-1}+\frac{x}{x^2+x+1}+\frac{6}{1-x}\right)\left(x^2-1\right)\)

\(=\left[\frac{6x^2+8x+7}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\left(x-1\right)\left(x+1\right)\)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\left(x-1\right)\left(x+1\right)=x+1\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.

4 tháng 9 2023

Bài này là dạng bất phương trình vô tỉ ạ

7 tháng 6 2015

sao câu 2+2:2 không có dấu = vậy

có vài câu không phải toán lớp 9 đâu

1 tháng 2 2021

cấy pt dạng ni lớp 8 học rồi mà :v 

chỉ là thêm công thức nghiệm vào thôi ._.

1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0

<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0

<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0

Đặt t = x2 + 10x + 16

pt <=> t( t + 8 ) + 16 = 0

<=> t2 + 8t + 16 = 0

<=> ( t + 4 )2 = 0

<=> ( x2 + 10x + 16 + 4 )2 = 0

<=> ( x2 + 10x + 20 )2 = 0

=> x2 + 10x + 20 = 0

Δ' = b'2 - ac = 25 - 20 = 5

Δ' > 0 nên phương trình có hai nghiệm phân biệt

\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)

\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)

Vậy ...

2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0

<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0

<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0

Đặt t = x2 + 5x + 4

pt <=> t( t + 2 ) - 24 = 0

<=> t2 + 2t - 24 = 0

<=> ( t - 4 )( t + 6 ) = 0

<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0

<=> x( x + 5 )( x2 + 5x + 10 ) = 0

Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm

=> x = 0 hoặc x = -5

Vậy ...

3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0

<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0

<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0

Đặt t = x2 - 8x + 7

pt <=> t( t + 8 ) - 20 = 0

<=> t2 + 8t - 20 = 0

<=> ( t - 2 )( t + 10 ) = 0

<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0

<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0

<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)

+) x2 - 8x + 5 = 0

Δ' = b'2 - ac = 16 - 5 = 11

Δ' > 0 nên có hai nghiệm phân biệt 

\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)

\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)

+) x2 - 7x + 18 = 0

Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm

Vậy ...

1 tháng 2 2021

1.(x+2) . (x+4) . (x+6) . (x+8) + 16 = 0

(x+2) . (x+4) . (x+6) . (x+8)         = -16

x. ( 2 + 4 + 6 + 8 )                    = -16

x. 20                                         = -16

x4                                                          = -16 : 20 

x                                               = -4 / 5       

x                                                  = \(\sqrt[4]{\frac{-4}{5}}\)

Tk cho mình nhé !!

27 tháng 12 2016

5+5+8+0+6+4+5+2+4+1+1+2+3+4+5+6+6+7+8+9+100000000+45638+78536 x 12345 x 34 x 0 +100=100045829

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

27 tháng 12 2016

Dạ, cảm ơn anh, nhưng đây kg phải là đáp án của em. TRẻ con còn biết, mà người lại kg .Anh đừng tự tin, nhanh rồi cũng có lúc sai!!!

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............