Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) 3x2 . ( 5x2 - 7x + 4 ) = 15x4 - 21x3 + 12x2
b) xy2 . ( 2x2y - 5xy + y ) = 2x3y3 - 5x2y3 + xy3
c) ( 2x2 - 5x ) . ( 3x2 - 2x + 1 ) = 6x4 - 4x3 + 2x2 - 15x3 + 10x2 - 5x
= 6x4 - 19x3 + 12x2 - 5x
d) ( x - 3y ) . ( 2xy + y2 + x ) = 2x2y + xy2 + x2 - 6xy2 - 3y3 - 3xy
Bài 2 :
a) A = x2 + 9y2 - 6xy
=> A = x2 - 2 . x . 3y + ( 3y )2
=> A = ( x - 3y )2
Thay x = 19 và y = 13 vào biểu thức A ta có :
A = ( 19 - 3 . 13 )2
=> A = ( 19 - 39 )2
=> A = ( -20 )2
=> A = 400
b) B = x3 - 6x2y + 12xy2 - 8y3
=> B = ( x - 2y )3
Thay x = 12 và y = -4 vào biểu thức B ta có :
B = [ 12 - 2 . ( -4 ) ]3
=> B = ( 12 + 8 )3
=> B = 203
=> B = 8000
= -3y3 + 2x2y - 5xy2 + x2 - 3xy
a, \(x^2\) + 6x + 5 = 0
=>\(x^2\) + x + 5x +5 = 0
=>x(x + 1) + 5(x + 1) = 0
=>(x + 1)(x + 5) = 0
=> x + 1 =0 hoặc x + 5 =0
=> x = -1 hoặc x = -5
Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)
\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(8x^3+12x^2+6x+1=0.\)
\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)
\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)
\(=25x^2+45x+15+8+10x-40x-50x^2\)
\(=-25x^2+15x+23\)
\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)
\(=\left(x+y\right)^3-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)
\(=x^3+y^3\)
ta có : \(pt\Leftrightarrow\left(x-y+3-\sqrt{-y^2+2y+3}\right)\left(x-y+3+\sqrt{-y^2+2y+3}\right)=0\)
\(\Leftrightarrow\) cái đó
a , \(5x^2+9y^2-12xy-6x+9=0\)
\(\Leftrightarrow25x^2+45y^2-60xy-30x+45=0\)
\(\Leftrightarrow\left(5x\right)^2-2.5.\left(6y+3\right)+\left(6y+3\right)^2+9y^2-36y+36=0\)
\(\Leftrightarrow\left(5x-6y-3\right)^2+9\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(5x-6y-3\right)^2+9\left(y-2\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(5x-6y-3\right)^2\ge0\\9\left(y-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(5x-6y-3\right)^2+9\left(y-2\right)^2\ge0\)
Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}5x-6y-3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy ...
Bài 1: Phân tích đa thức thành nhân tử:
a) x(y+z) + 3(y+z)
\(=\left(y+z\right)\left(x+3\right)\)
b) 2x2 - 6x
\(=2x\left(x+3\right)\)
c) x2 - y2 - 3x - 3y
\(=\left(x^2-y^2\right)-\left(3x+3y\right)\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-3\right)\)
d) 2x2 - 5x - 3
\(=2x^2-6x+x-3\)
\(=\left(2x^2-6x\right)+\left(x-3\right)\)
\(=2x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(2x+1\right)\)
e) x4 - y4
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
f) mx - my + nx - ny
\(=\left(mx-my\right)++\left(nx-ny\right)\)
\(=m\left(x-y\right)+n\left(x-y\right)\)
\(=\left(x-y\right)\left(m+n\right)\)
Bài 1:
a,\(x\left(y+z\right)+3\left(y+z\right)\)
\(=\left(x+3\right)\left(y+z\right)\)
b,\(2x^2-6x\)
\(=2x\left(x-6\right)\)
c,\(x^2-y^2-3x-3y\)
\(=\left(x^2-y^2\right)+\left(-3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x-y-3\right)\left(x+y\right)\)
d,\(2x^2-5x-3\)
\(=2x^2-6x+1x-3\)
\(=\left(2x^2-6x\right)+\left(1x-3\right)\)
\(=2x\left(x-3\right)+1\left(x-3\right)\)
\(=\left(2x+1\right)\left(x-3\right)\)
e,\(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
f,\(mx-my+nx-ny\)
\(=\left(mx-my\right)+\left(nx-ny\right)\)
\(=m\left(x-y\right)+n\left(x-y\right)\)
\(=\left(m+n\right)\left(x-y\right)\)
3x^2(5x^2-7x+4)
=15x^4-21x^3+12x^2
xy^2(2x^2y-5xy+y)
=2x^3y^3-5x^2y^3+xy^3
(2x^2-5x)(3x^2-2x+1)
=6x^4-4x^3+2x^2-15x^3+10x^2-5x
=6x^4-19x^3+12x^2-5x
(x-3y)(2xy+y^2+x)
=2x^2y+xy^2+x^2-6xy^2-3y^3-3xy
=-3y^3+2x^2y-5xy^2+x^2-3xy
mình k cho bạn rồi nha, tích lại cho mình, số điểm của mình là -159 điểm
2: \(=3\left(x-2y\right)+y\left(x-2y\right)=\left(x-2y\right)\left(y+3\right)\)
3: \(=x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
4: \(x^2+2x+1-16y^2\)
\(=\left(x+1\right)^2-16y^2\)
\(=\left(x+1+4y\right)\left(x+1-4y\right)\)
5: \(x^2-y^2+5x+5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+5\right)\)
6: \(=25-\left(x^2-2xy+y^2\right)\)
\(=25-\left(x-y\right)^2\)
\(=\left(5-x+y\right)\left(5+x-y\right)\)