Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\frac{3n+5}{6n}=\frac{n+2}{6n}+\frac{2n+3}{6n}\)
b) \(P=\frac{3n}{6n}+\frac{5}{6n}=\frac{3}{6}+\frac{5}{6n}\)=> để P lớn nhất 6n phải bé nhất => n = 1
\(GTLN.P=\frac{3}{6}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)
p = (6n+4+1)/(3n+2) = 2 + 1/(3n+2)
3n+2 \(\ge\)3+2 = 5 ( do là số tự nhiên khác 0 )
=> 1/(3n+2) \(\le\)1/5 => p \(\le\)11/5
''='' <=> n = 1
\(a,\)Giả sử phân số P chưa tối giản
\(\Rightarrow6n+5⋮d;3n+2⋮d\)
Từ \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+4⋮d\)
\(\Rightarrow\left(6n+5\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy p/số trên tối giản
\(b,P=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\)
Để \(P\)đạt Max thì \(\frac{1}{3n+2}\)phải đạt Max
\(\Rightarrow3n+2=1\Leftrightarrow n=-\frac{1}{3}\)
Vậy Max P = 1+1=2<=> n = -1/3
a) \(P=\frac{6n+5}{3n+2}\)là phân số tối giản <=> ƯCLN(6n + 5; 3n + 2) \(\in\){-1;1}
Gọi d là ƯCLN(6n+5;3n + 2)
Ta có : 6n + 5 \(⋮\)d
3n + 2 \(⋮\)d => 2(3n + 2) \(⋮\)d => 6n + 4 \(⋮\)d
=> (6n + 5) - (6n + 4) = 1 \(⋮\)d => d\(\in\){1; -1}
Vậy P là phần số tối giản
b) tự làm
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
Chứng tỏ rằng : phân số 5n+3/3n+2 là phân số tối giản với n thuộc N?
Để phân số 5n+3/3n+2 tối giản với mọi n thuộc N thì ƯCLN của chúng phải bằng 1 và -1.Ta có:
Gọi d là ước chung của (5n + 3) ;( 3n + 2) (d thuộc Z)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d thuộc ( 1; -1)
=> ƯCLN(5n + 3 ; 3n + 2) = 1;-1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
bằng 1