K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

Cho mk hỏi sao lại là 2017 ạ ko phải 2018 sao ạ?

NV
10 tháng 9 2020

72.

\(\Leftrightarrow sinx=m+1\)

Do \(-1\le sinx\le1\) nên pt có nghiệm khi và chỉ khi:

\(-1\le m+1\le1\)

\(\Leftrightarrow-2\le m\le0\)

73.

\(\Leftrightarrow cosx=m\)

Do \(-1\le cosx\le1\) nên pt vô nghiệm khi và chỉ khi: \(\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

91.

PT $\sin x=a$ có nghiệm khi $\max (\sin x)\geq a\geq \min (\sin x)$

$\Leftrightarrow 1\geq a\geq -1$

Hay $a\in [-1;1]$

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

93.

$\sin (\pi\cos x)=1$

$\Rightarrow \pi\cos x=\pi (\frac{1}{2}+2k)$

$\Leftrightarrow \cos x=2k+\frac{1}{2}$ (trong đó $k$ là số nguyên)

Vì $\cos x\in [-1;1]$ nên $2k+\frac{1}{2}\in [-1;1]$

Vì $k$ nguyên nên $k=0$

$\Rightarrow \cos x=2k+\frac{1}{2}=\frac{1}{2}$

$\Rightarrow x=\pm \frac{\pi}{3}+2n\pi$ với $n$ nguyên.

5 tháng 9 2020

đề câu 1 đúng r

5 tháng 9 2020

ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên

bài trước mk bình luận bạn đọc chưa nhỉ

NV
1 tháng 6 2021

1.

\(\Leftrightarrow1-2sin^2x+sinx+m=0\)

\(\Leftrightarrow2sin^2x-sinx-1=m\)

Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)

Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)

NV
1 tháng 6 2021

2.

ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)

Pt tương đương:

\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)

\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"

NV
8 tháng 9 2020

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\) \(\Rightarrow2sinx.cosx=t^2-1\)

Do \(x\in\left[0;\frac{\pi}{2}\right]\Rightarrow x+\frac{\pi}{4}\in\left[\frac{\pi}{4};\frac{3\pi}{4}\right]\) \(\Rightarrow\frac{\sqrt{2}}{2}\le sin\left(x+\frac{\pi}{4}\right)\le1\)

\(\Rightarrow1\le t\le\sqrt{2}\)

Pt trở thành: \(m\left(t+1\right)=t^2\Leftrightarrow m=\frac{t^2}{t+1}\)

Xét \(f\left(t\right)=\frac{t^2}{t+1}\) trên \(\left[1;\sqrt{2}\right]\)

\(f\left(t\right)-\frac{1}{2}=\frac{t^2}{t+1}-\frac{1}{2}=\frac{\left(t-1\right)\left(2t+1\right)}{2\left(t+1\right)}\ge0\Rightarrow f\left(t\right)\ge\frac{1}{2}\)

\(f\left(t\right)-2\sqrt{2}+2=\frac{t^2}{t+1}-2\sqrt{2}+2=\frac{\left(t-\sqrt{2}\right)\left(t+2-\sqrt{2}\right)}{t+1}\le0\Rightarrow f\left(t\right)\le2\sqrt{2}-2\)

\(\Rightarrow\frac{1}{2}\le m\le2\sqrt{2}-2\)

NV
20 tháng 8 2020

7.

Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)

Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)

Pt trở thành:

\(\frac{t^2-1}{2}+t=1\)

\(\Leftrightarrow t^2+2t-3=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)

\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)

NV
20 tháng 8 2020

6.

\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)

Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)