Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6/1.3.7 + 6/3.7.9 + 6/7.9.13 + 6/9.13.15 + 6/13.15.19
\(=\frac{6}{8}\left(\frac{8}{1.3.7}+\frac{8}{3.7.9}+...+\frac{8}{13.15.19}\right)\)
\(=\frac{6}{8}\left(\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+...+\frac{1}{13.15}-\frac{1}{15.19}\right)\)
\(=\frac{6}{8}\cdot\left(\frac{1}{3}-\frac{1}{285}\right)\)
\(=\frac{6}{8}\cdot\frac{94}{285}\)
\(=\frac{47}{190}\)
Bạn ơi 6/8 o đâu ra vậy bạn có thể làm rõ ràng ra được không
Giải:
Đặt:
\(A=\dfrac{6}{1.3.7}+\dfrac{6}{3.7.9}+\dfrac{6}{7.9.13}+\dfrac{6}{9.13.15}+\dfrac{6}{13.15.19}\)
\(\Leftrightarrow A=\dfrac{6}{8}\left(\dfrac{8}{1.3.7}+\dfrac{8}{3.7.9}+\dfrac{8}{7.9.13}+\dfrac{8}{9.13.15}+\dfrac{8}{13.15.19}\right)\)
\(\Leftrightarrow A=\dfrac{6}{8}\left(\dfrac{1}{1.3}-\dfrac{1}{3.7}+\dfrac{1}{3.7}-\dfrac{1}{7.9}+\dfrac{1}{7.9}-\dfrac{1}{9.13}+\dfrac{1}{9.13}-\dfrac{1}{13.15}+\dfrac{1}{13.15}-\dfrac{1}{15.19}\right)\)
\(\Leftrightarrow A=\dfrac{6}{8}\left(\dfrac{1}{1.3}-\dfrac{1}{15.19}\right)\)
\(\Leftrightarrow A=\dfrac{6}{8}\left(\dfrac{1}{3}-\dfrac{1}{285}\right)\)
\(\Leftrightarrow A=\dfrac{6}{8}.\dfrac{94}{285}\)
\(\Leftrightarrow A=\dfrac{47}{190}\)
Vậy ...
Tính tổng :\(\frac{6}{1.3.5}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\)
\(C=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\)
\(C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\)
\(C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\)
\(C=\dfrac{1}{3}-\dfrac{1}{21}\)
\(C=\dfrac{2}{7}\)
C = \(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
C = \(2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
C = \(2.\left(\frac{1}{15}-\frac{1}{90}\right)=2.\frac{1}{18}\)
C = \(\frac{1}{9}\)
\(B=\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{99.101}\)
\(=3.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{9}{99.101}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{101}\right)=3.\left(\frac{101}{101}-\frac{1}{101}\right)=3.\frac{100}{101}=\frac{300}{101}\)
\(C=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+....+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{90}\right)=2.\left(\frac{6}{90}-\frac{1}{90}\right)=2.\frac{5}{90}=\frac{1}{9}\)
A = (6.6.6.6.6.6.6.6 - 1679616).(9.8.7.6.5.4.3.2.1)
A = (68 - 28.38).9!
A = [68 - (2.3)8].9!
A = [68 - 68].9!
A = 0.9!
A = 0
( 1 + 1 +1 ) ! = 6
2 + 2+ 2 = 6
3.3-3 = 6
5+(5:5) = 6
6+6-6 = 6
7- ( 7 : 7) = 6
2 + 2 + 2 = 6
3 x 3 - 3 = 6
5 : 5 + 5 = 6
6 x 6 : 6 = 6
7 - 7 : 7 = 6
6.6:6 + 6 - 6.6 + 6 - 6 + 6 : 6
= 6.(6 : 6) + 6 - 36 + (6 - 6) + 1
= 6.1 + 6 - 36 + 0 + 1
= 6 + 6 - 36 + (0 + 1)
= 12 - 36 + 1
= - 24 + 1
= - 23
6/1.3.7 + 6/3.7.9 + 6/7.9.13 + 6/9.13.15 + 6/13.15.19
=\frac{6}{8}\left(\frac{8}{1.3.7}+\frac{8}{3.7.9}+...+\frac{8}{13.15.19}\right)=86(1.3.78+3.7.98+...+13.15.198)
=\frac{6}{8}\left(\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+...+\frac{1}{13.15}-\frac{1}{15.19}\right)=86(1.31−3.71+3.71−7.91+...+13.151−15.191)
=\frac{6}{8}\cdot\left(\frac{1}{3}-\frac{1}{285}\right)=86⋅(31−2851)
=\frac{6}{8}\cdot\frac{94}{285}=86⋅28594
=\frac{47}{190}=19047