Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ
=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC
b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)
Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)
Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)
Phần a là HBA ~ ABC chứ nhỉ?
a, Xét tam giác HBA và tam giác ABC có:
góc BHA = góc BAC = 90o (ABC vg tại A và AH là đường cao)
góc B chung
\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)
b, Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt) (1)
Tương tự ta cx có: \(\Delta\)HAC ~ \(\Delta\)ABC (2)
Từ (1) và (2) \(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)HAC
\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay AH2 = CH . BH (đpcm)
Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\) hay AB2 = BC . BH (đpcm)
Vì \(\Delta\)HAC ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AC}{BC}=\frac{HC}{AC}\) hay AC2 = BC . HC (đpcm)
c, Xét tam giác ABC vg tại A có: BA\(\perp\)CA
\(\Rightarrow\) BC2 = AB2 + AC2 (định lí Pytago)
BC2 = 152 + 202
BC2 = 625
BC = \(\sqrt{625}\) = 25 (cm)
Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\)
hay \(\frac{15}{25}=\frac{BH}{15}\) \(\Rightarrow\) BH = \(\frac{15^2}{25}\) = 9 (cm)
Vì BH = 9 cm nên CH = 25 - 9 = 16 (cm)
Vì \(\Delta\)HBA ~ \(\Delta\)HAC (cmt)
\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay \(\frac{AH}{16}=\frac{9}{AH}\)
\(\Rightarrow\) \(AH^2=16\cdot9=144\)
\(\Rightarrow\) \(AH=\sqrt{144}=12\) (cm)
d, Xét tam giác ABC có: BD là tia p/g của góc ABC (gt)
\(\Rightarrow\) \(\frac{AD}{AB}=\frac{CD}{BC}\) (t/c đường p/g của tam giác)
hay \(\frac{20-CD}{15}=\frac{CD}{25}\)
\(\Leftrightarrow\) \(\frac{5\left(20-CD\right)}{75}=\frac{3CD}{75}\)
\(\Rightarrow\) 5(20 - CD) = 3CD
\(\Leftrightarrow\) 100 - 5CD = 3CD
\(\Leftrightarrow\) 3CD + 5CD = 100
\(\Leftrightarrow\) 8CD = 100
\(\Leftrightarrow\) CD = 12,5 (cm)
\(\Rightarrow\) AD = 20 - 12,5 = 7,5 (cm)
e, Ko thể có 2 điểm H được nên mk gọi D vuông góc với BC tại M nha!
Xét tam giác CMD và tam giác CAB có:
góc CMD = góc CAB = 90o (DM \(\perp\) BC và \(\Delta\)ABC vg tại A theo gt)
góc C chung
\(\Rightarrow\) \(\Delta\)CMD ~ \(\Delta\)CAB (gg)
\(\Rightarrow\) \(\frac{CM}{CA}=\frac{CD}{CB}\) hay CM . CB = CD . CA (đpcm)
Chúc bn học tốt!! (Dài quá :vvv)
a) Xét ΔHBA và ΔABC có
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABC}\) chung
Do đó: ΔHBA∼ΔABC(g-g)(1)
Xét ΔHAC và ΔABC có
\(\widehat{AHC}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ACB}\) chung
Do đó: ΔHAC∼ΔABC(g-g)(2)
Từ (1) và (2) suy ra ΔHBA∼ΔHAC(đpcm)
b) Ta có: ΔHBA∼ΔABC(cmt)
⇒\(\frac{HB}{AB}=\frac{BA}{BC}=\frac{HA}{AC}=k_1\)(tỉ số đồng dạng)
hay \(AB^2=BC\cdot BH\)(đpcm)
Ta có: ΔHAC∼ΔABC(cmt)
⇒\(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}=k_2\)(tỉ số đồng dạng)
hay \(AC^2=BC\cdot HC\)(đpcm)
Ta có: ΔHBA∼ΔHAC(cmt)
⇒\(\frac{HB}{HA}=\frac{HA}{HC}=\frac{BA}{AC}=k\)(tỉ số đồng dạng)
hay \(HA^2=HB\cdot HC\)(đpcm)
c) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
⇔\(BC^2=15^2+20^2=625\)
hay \(BC=\sqrt{625}=25cm\)
Ta có: \(AB^2=BC\cdot BH\)(cmt)
⇔\(15^2=25\cdot BH\)
⇔\(BH=\frac{15^2}{25}=\frac{225}{25}=9cm\)
Ta có: \(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}\)(cmt)
⇔\(\frac{HA}{15}=\frac{20}{25}\)
⇔\(HA=\frac{15\cdot20}{25}=\frac{300}{25}=12cm\)
Vậy: BC=25cm; BH=9cm; HA=12cm
d) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\frac{AD}{AB}=\frac{CD}{CB}\)(tính chất đường phân giác của tam giác)
hay \(\frac{AD}{15}=\frac{CD}{25}\)
Ta có: AD+CD=AC(D nằm giữa A và C)
hay AD+CD=20cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{AD}{15}=\frac{CD}{25}=\frac{AD+CD}{15+25}=\frac{20}{40}=\frac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\frac{AD}{15}=\frac{1}{2}\\\frac{CD}{25}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\frac{15\cdot1}{2}=7,5cm\\CD=\frac{25\cdot1}{2}=12,5cm\end{matrix}\right.\)
Vậy: AD=7,5cm; CD=12,5cm
e) Đề sai rồi bạn
A B C H
a) Xét tam giác HBA và tam giác ABC :
\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ABC}\)chung
=> tam giác HBA \(~\)tam giác ABC ( đpcm )
b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )
c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )
Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)
Vậy....
A B C H
a. Xét tam giác HBA và tam giác ABC có:
Góc HBA: góc chung
Góc BHA = Góc BAC (= 900)
=> Tam giác HBA đồng dạng với tam giác ABC.
b. Cái này áp dụng đ/lí Pi-ta-go là ra rồi, có cần chứng minh đâu bạn ? Bạn có thể search gg cách c/minh đ/lí Pi-ta-go nhé :))
Mày nhìn cái chóa j