Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(6x^2-3xy^2\right)+M=^2+y^2-2y^2\)
\(\Rightarrow M=\left(x^2+y^2-2xy^2\right)-\left(6x^2-3xy^2\right)\)
\(\Rightarrow M=x^2+y^2-2xy^2-6x^2+3xy^2\)
\(\Rightarrow M=\left(x^2-6x^2\right)+y^2+\left(-2xy^2+3xy^2\right)\)
\(\Rightarrow M=-7x^2+y^2+xy^2\)
b) \(M-\left(2xy-4y^2\right)=5xy+x^2-7y^2\)
\(\Rightarrow M=\left(5xy+x^2-7y^2\right)+\left(2xy-4y^2\right)\)
\(\Rightarrow M=5xy+x^2-7y^2+2xy-4y^2\)
\(\Rightarrow M=\left(5xy+2xy\right)+x^2+\left(-7y^2-4y^2\right)\)
\(\Rightarrow M=7xy+x^2-11y^2\)
a.)=(x+y)^2 mà x+y=5 =>5^2=25
b.) làm như ý a.) =5^3=125
c.)=625
d.)=3125
a,Ta có: x+y= -7/6 và y+z= 1/4
=>x+y+y+z= -7/6 +1/4
=>x+z+2y= -11/12
=>1/2+2y= -11/12
=>2y= -11/12 -1/2
=>2y= -17/12
=>y= -17/24
Mà x+y=-7/6 =>x= -7/6+17/24= -11/24
x+z=1/2 =>z=1/2+11/24=23/24
Ta có: \(x+y=-\frac{7}{6};y+z=\frac{1}{4};x+z=\frac{1}{2}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(\Rightarrow2x+2y+2z=-\frac{28}{24}+\frac{6}{24}+\frac{12}{24}\)
\(\Rightarrow2\left(x+y+z\right)=-\frac{5}{12}\)
\(\Rightarrow x+y+z=-\frac{5}{12}:2\)
\(\Rightarrow x+y+z=-\frac{5}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+y\right)=-\frac{5}{24}+\frac{7}{6}\Rightarrow z=-\frac{5}{24}+\frac{28}{24}=\frac{23}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(y+z\right)=-\frac{5}{24}-\frac{1}{4}\Rightarrow x=-\frac{5}{24}-\frac{6}{24}=-\frac{11}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+z\right)=-\frac{5}{24}-\frac{1}{2}\Rightarrow y=-\frac{5}{24}-\frac{12}{24}=-\frac{17}{24}\)
Vậy \(x=\frac{23}{24};y=-\frac{17}{24};z=-\frac{11}{24}\)
Chuk pạn hok tốt!
a) Ta có:
\(x+y=-1\)
\(\Rightarrow\left(x+y\right)^2=\left(-1\right)^2\)
\(\Rightarrow x^2+y^2+2xy=1\)
Thay xy = -6 vào ta được
\(x^2+y^2+2.\left(-6\right)=1\)
\(\Rightarrow x^2+y^2-12=1\)
\(\Rightarrow x^2+y^2=1+12\)
\(\Rightarrow x^2+y^2=13\)
b) Ta có:
\(x+y=17\)
\(\Rightarrow\left(x+y\right)^2=17^2\)
\(\Rightarrow x^2+y^2+2xy=289\)
Thay xy = 72 vào ta được:
\(x^2+y^2+2.72=289\)
\(\Rightarrow x^2+y^2+144=289\)
\(\Rightarrow x^2+y^2=289-144=145\)
Ta lại có:
\(\left(x-y\right)^2\)
\(=x^2+y^2-2xy\)
Thay x2 + y2 = 145 và xy = 72
\(=145-2.72\)
\(=145-144\)
\(=1\)
c) Ta có:
\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Rightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Bài 2:
Ta có: \(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)
\(\Leftrightarrow\left(\dfrac{x-1}{65}-1\right)+\left(\dfrac{x-3}{63}-1\right)=\left(\dfrac{x-5}{61}-1\right)+\left(\dfrac{x-7}{59}-1\right)\)
\(\Leftrightarrow\left(x-66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
=>x-66=0
hay x=66
\(A=5xy^2-3x^2y+6x+7y^2+1\)
\(B=13xy^2-6x^2y+3y^2+5x+5\)
=>\(A+B=18xy^2-9x^2y+11x+10y^2+6\)
\(A-B=-8xy^2+3x^2y+x+4y^2-4\)