Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3-7x^2+4x+1=0\)
\(\Leftrightarrow2x^2\left(x-1\right)-5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2-5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x^2-5x-1=0\end{cases}}\) Đến đây tự làm tiếp nha
Phương trình trên tương đương
X.(X2 - 3X + 2) = 0
<=> x=0 và x2 - 3x + 2 = 0
x2 - 3x + 2 = 0 <=> x2 - 2x - x + 2 = 0 <=> x.(x - 2) - (x - 2) = 0 <=> (x - 1)(x - 2) = 0 <=> x = 1 hoặc x = 2.
Vậy 0; 1 ; 2 là nghiệm của PT.
\(Đk:x\ge\dfrac{3}{2}\Rightarrow x>0\)
\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)
\(\Leftrightarrow2x^3-8x^2+10x-2-2\sqrt{2x-3}=0\)
\(\Leftrightarrow\left(2x^3-8x^2+8x\right)+\left[\left(2x-3\right)-2\sqrt{2x-3}+1\right]=0\)
\(\Leftrightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2\ge0\left(x>0\right)\\\left(\sqrt{2x-3}-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2\ge0\)
Do đó: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2=0\\\left(\sqrt{2x-3}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.
x^3-4x^2+5x-1-căn 2x-3=0
=>\(x^3-4x^2+5x-2-\left(\sqrt{2x-3}-1\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2-\dfrac{2x-3-1}{\sqrt{2x-3}+1}=0\)
=>\(\left(x-2\right)\left[\left(x-1\right)\left(x-2\right)-\dfrac{2}{\sqrt{2x-3}+1}\right]=0\)
=>x-2=0
=>x=2
\(\Leftrightarrow\sqrt{2x^2-x+3}-\left(x+1\right)+\left(x^2+1\right)-\sqrt{21x-17}=0\)
=>\(\dfrac{2x^2-x+3-x^2-2x-1}{\sqrt{2x^2-x+3}+x+1}+\dfrac{x^4+2x^2+1-21x+17}{x^2+1+\sqrt{21x-17}}=0\)
=>x^2-3x+2=0
=>x=1 hoặc x=2