K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

a) \(\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)

+) Đkxđ: \(\hept{\begin{cases}x^2-x+1\ne0\\x^3+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\ne0\\x^3\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\left(lđ\right)\\x\ne-1\end{cases}}}\)

+) \(A=\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)

\(=\frac{1}{x^2-x+1}+1-\frac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x+1+x^3+1-x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^3-x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

P/s: ko chắc

7 tháng 12 2019

Huhu luoi qua

a) \(\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)

\(=\frac{1}{x^2-x+1}+1-\left(\frac{x^2+2}{x^3+1}\right)\)

\(=\frac{x^5-2x^4+3x^3-2x^2+x}{x^5-x^4+x^3+x^2-x+1}\)

\(=\frac{x\left(x^4-2x^3+3x^2-2x+1\right)}{\left(x+1\right)\left(x^4-2x^3+3x^2-2x+1\right)}\)

\(=\frac{x}{x+1}\)

b) \(\frac{7}{x}-\frac{x}{x+6}+\frac{36}{x^2+6x}\)

\(=\frac{-x^2+7x+78}{x^2+6x}\)

\(=\frac{\left(-x-6\right)\left(x-13\right)}{x\left(x+6\right)}\)

\(=\frac{-x+13}{x}\)

21 tháng 12 2020

\(\frac{x^2+2}{2xy^3}-\frac{2x+2}{2xy^3}=\frac{x^2+2-2x-2}{2xy^3}=\frac{x^2-2x}{2xy^3}=\frac{x\left(x-2\right)}{2xy^3}=\frac{x-2}{2y^3}\)

\(\frac{4}{x-5}-\frac{1}{x+5}+\frac{13x-x^2}{25-x^2}=\frac{4}{x-5}-\frac{1}{x+5}+\frac{x^2-13x}{x^2-25}\)

\(=\frac{4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{\left(x-5\right)\left(x+5\right)}+\frac{x^2-13x}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{4x+20-x+5+x^2-13x}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)

28 tháng 9 2019

45opkik

15 tháng 1 2015

giả sử 5 nghiệm là x1,x2...x5

có:x^5-x^4-x^3-x^2-x-2=(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)

                                =x^5-(x1+x2+x3+x4+x5)x^4-(.....

đồng nhất hệ số

x1+x2+x3+x4+x5=1

(x1+x2+x3+x4+x5)/5=1/5

23 tháng 12 2020

a)\(\frac{x^2+xy}{x^2-y^2}=\frac{x\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x}{x-y}\)

b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5x-2}{x^2-4}\)

\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{-5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4x-8+3x+6-5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2}{x+2}\)

a: \(=\dfrac{1}{x^2+x+1}+\dfrac{x^3-1}{x^2+x+1}=\dfrac{x^3}{x^2+x+1}\)

b: \(=\dfrac{-x^4}{x-1}+\dfrac{\left(x-1\right)\left(x^3+x^2+x+1\right)}{x-1}\)

\(=\dfrac{-x^4+x^4-1}{x-1}=\dfrac{-1}{x-1}\)