K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

5x + 15 = 0

5x = 0 -15 

5x = -15

x = -15 : 5

x = -3

2 tháng 5 2018

15x + 15 = 0 

15x         = 0 -15

15x         = -15

   x          = -15 : 15

   x          = -1

 Hok tốt

k nha <3

18 tháng 3 2020

a) ( 5x - 4)(4x + 6)=0

<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)

Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)

b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0

<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)

Vậy S = \(\left\{2;3\right\}\)

c) ( 4x - 10 )( 24 + 5x ) = 0

<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)

Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)

d) ( x - 3 )( 2x + 1 ) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)

e) ( 5x - 10 )( 8 - 2x ) = 0

<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy S = \(\left\{2;4\right\}\)

f) ( 9 - 3x )( 15 + 3x ) = 0

<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy S = \(\left\{3;-5\right\}\)

Học tốt nhaaa !

18 tháng 3 2020

Cảm ơn bn

21 tháng 1 2016

a) (x - 1)(5x + 3) = (3x - 8)(x - 1)

\(\Leftrightarrow\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+3-3x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+11\right)=0\)

\(\Leftrightarrow x-1=0\Rightarrow x=1\)

\(2x+11=0\Rightarrow x=\frac{-11}{2}\)

20 tháng 6 2020

PT<=> (2x2+5)(x-3)=0

<=> x=3 

\(2x^2\left(x-3\right)+5x-15=0\)

\(\Leftrightarrow2x^3-6x^2+5x-15=0\)

\(\Leftrightarrow\left(2x^2+5\right)\left(x-3\right)=0\)

TH1 : \(2x^2+5=0\Leftrightarrow2x^2=-5\left(voli\right)\)

TH2 : \(x-3=0\Leftrightarrow x=3\left(tm\right)\)

Vậy phương trình có nghiệm là x = 3 

22 tháng 4 2020

Cách làm luôn bn ơi

22 tháng 4 2020

Phương trình đưa được về dạng ax + b = 0

a) Ta có: \(\left(5x-15\right)\left(4+6x\right)=0\)

\(\Leftrightarrow5\left(x-3\right)\cdot2\cdot\left(2+3x\right)=0\)

\(\Leftrightarrow10\left(x-3\right)\left(2+3x\right)=0\)

Vì 10\(\ne\)0 nên

\(\left[{}\begin{matrix}x-3=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{3;\frac{-2}{3}\right\}\)

b) Ta có: \(\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\5x=6\\\frac{1}{2}x=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{6}{5};\frac{3}{2}\right\}\)

c) Ta có: \(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\)

\(\Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=3\\x=\frac{25}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{12}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{4};\frac{25}{12}\right\}\)

d) Ta có: \(\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5\left(x-1\right)-\frac{3}{2}-\frac{\left(2-3\right)\left(x-1\right)}{3}\right]=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5x-5-\frac{3}{2}-\frac{-1\left(x-1\right)}{3}\right]=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-5-\frac{3}{2}-\frac{1-x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-\frac{13}{2}-\frac{1}{3}+\frac{x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{15x}{3}-\frac{41}{6}+\frac{x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{16x}{3}-\frac{41}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{1}{6}=0\\\frac{16x}{3}-\frac{41}{6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{1}{6}\\\frac{16}{3}\cdot x=\frac{41}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}:\frac{2}{3}\\x=\frac{41}{6}:\frac{16}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{41}{32}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{4};\frac{41}{32}\right\}\)

3 tháng 3 2020

\(a.\left(5x-15\right)\left(4+6x\right)=0\\ \left[{}\begin{matrix}5x-15=0\\4+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)

\(b.\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}=0\right)\\ \left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=-\frac{3}{2}\end{matrix}\right.\)

c.

\(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\\ \Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\\ \left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{2}\end{matrix}\right.\)

27 tháng 4 2015

x- 5x -15 = 0 => (x2  - 2.x. 5/2 + 25/4) - 25/4  - 60/4 = 0

=> (x - 5/2)2 = 85/4

=> \(x-\frac{5}{2}=\frac{\sqrt{85}}{2}\) hoặc   \(x-\frac{5}{2}=\frac{-\sqrt{85}}{2}\)

+) \(x-\frac{5}{2}=\frac{\sqrt{85}}{2}\)=> \(x=\frac{\sqrt{85}+5}{2}\)

+) \(x-\frac{5}{2}=\frac{-\sqrt{85}}{2}\Rightarrow x=\frac{5-\sqrt{85}}{2}\)

Vậy..............

27 tháng 4 2015

x2+5x+15= (x2+ 2 .x. 5/2 + 25/4) - 25/4  + 15 = (x - 5/2)2  - 25/4 + 60/4 = (x - 5/2)2  + 35/4 \(\ge\) 0 + 35/4 = 35/4 với mọi x

=> phương trình x2+5x+15= 0 vô nghiệm

7 tháng 11 2018

Ta có:

x2 + 3x + 5x - 15 = 0

<=> x2 + 8x -15 = 0

Ap dụng công thức nghiệm pt bậc 2 vào pt trên ta có:

a = 1; b = 8; c = -15

Δ = b2 - 4ac = 82 + 4.15 = 124

=> √Δ = 2√31

=> x1 = (-b - √Δ)/ 2a = (-8 - 2√31)/2 = -4 - √31

x2 = (-b + 2√31)/2 = √31 -4

Vaay