K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2015

b)

S2=6/2x5+6/5x8+6/8x11+...+6/29x32

=2.(3/2.5+3/5.8+...+3/29.32)

=2.(1/2-1/5+1/5-1/8+...+1/29-1/32)

=2.(1/2-1/32)

=2.15/32

=15/16

1 tháng 5 2015

a)

Ta có:

S1=2/3x5+2/5x7+2/7x9+...+2/97x99

=1/3-1/5+1/5-1/7+...+1/97-1/99

=1/3-1/99

=32/99

2 tháng 4 2017

\(A=\frac{1}{2.5}+\frac{1}{3.5}+\frac{1}{3.7}+\frac{1}{4.7}+...+\frac{1}{9.19}+\frac{1}{10.19}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{4.5}+\frac{1}{6.5}+\frac{1}{6.7}+\frac{1}{8.7}+...+\frac{1}{18.19}+\frac{1}{20.19}\)

\(\Rightarrow\frac{1}{2}A=\frac{5-4}{4.5}+\frac{6-5}{6.5}+\frac{7-6}{6.7}+...+\frac{20-19}{20.19}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{4}-\frac{1}{20}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{5}\)

\(\Rightarrow A=\frac{2}{5}\)

22 tháng 4 2017

Mình có cách giải khác:

A= \(\frac{1}{2.5}+\frac{1}{3.5}+\frac{1}{3.7}+\frac{1}{4.7}+...+\frac{1}{9.19}+\frac{1}{10.19}\)

A= \(\frac{2.1}{2.2.5}+\frac{2.1}{2.3.5}+\frac{2.1}{2.3.7}+\frac{2.1}{2.4.7}+...+\frac{2.1}{2.9.19}+\frac{2.1}{2.10.19}\)

A= \(\frac{2.1}{4.5}+\frac{2.1}{5.6}+\frac{2.1}{6.7}+\frac{2.1}{7.8}+...+\frac{2.1}{18.19}+\frac{2.1}{19.20}\)

A= \(2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)

A=\(2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

A= \(2.\left(\frac{1}{4}+0+0+0+...+0+0-\frac{1}{20}\right)\)

A=\(2.\left(\frac{1}{4}-\frac{1}{20}\right)\)

A=\(2.\left(\frac{5}{20}-\frac{1}{20}\right)\)

A= \(2.\frac{1}{5}\)

A=\(\frac{2}{5}\)

Xong rùi đó!!!!! :))

12 tháng 5 2016

a/ (3x - 1).(1/2.5) = 0 => 3x - 1 = 0 => 3x = 1 => x = 1/3

b/ 1/4 + 1/3 : (2x - 1) = 5 => 1/3 : (2x - 1) = 19/4 => 2x - 1 = 4/57 => 2x = 61/57 => x = 61/114

c/ (2x + 2/5)2 - 9/25 = 0 => (2x + 2/5)2 = 9/25 => 2x + 2/5 = 3/5 => 2x = 1/5 => x = 1/10 

                                                         hoặc             2x + 2/5 = -3/5 => 2x = -1 => x = -1/2

     Vậy x = {1/10 ; -1/2}

d/ (3x - 1/2)3 + 1/9 = 0 => (3x - 1/2)3 = -1/9 => 3x - 1/2 = -1/3 => 3x = 1/6 => x = 1/18

12 tháng 5 2016

bạn viết rõ hơn được không

6 tháng 7 2021

là sao ????=))

giữa các phân số là cộng hay trừ vậy???

\(\dfrac{1}{1.3}+\dfrac{1}{2.3}+\dfrac{1}{2.5}+\dfrac{1}{3.5}+\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.9}\) 

\(=\dfrac{1}{1.3}+\dfrac{1}{3.2}+\dfrac{1}{2.5}+\dfrac{1}{5.3}+\dfrac{1}{3.7}+\dfrac{1}{7.4}+\dfrac{1}{4.9}\) 

\(=\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right):\dfrac{1}{2}\) 

\(=\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right):\dfrac{1}{2}\) 

\(=\left(\dfrac{1}{2}-\dfrac{1}{9}\right):\dfrac{1}{2}\) 

\(=\dfrac{7}{18}:\dfrac{1}{2}\) 

\(=\dfrac{7}{9}\)

18 tháng 3 2019

A=1/6+1/12+1/20+1/30+1/42+1/56+1/72

A=1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9

A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/2-1/9

Câu B tương tự nha bạn :333

2 tháng 4 2020

a/\(\frac{2^3\cdot3^4}{2^2\cdot3^2\cdot5}=\frac{18}{5}\)\(\frac{2^4\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}=\frac{2\cdot11}{5\cdot7}=\frac{22}{35}\)

b/\(\frac{121\cdot75\cdot130\cdot169}{39\cdot60\cdot11\cdot198}=\frac{11^2\cdot5^3\cdot13^3\cdot2\cdot3}{2^3\cdot3^4\cdot5\cdot11^2\cdot13}=\frac{5^2\cdot13^2}{2^2\cdot3^3}=\frac{4225}{108}\)

c/\(\frac{1998\cdot1990+3978}{1992\cdot1991-3984}=\frac{2^2\cdot3^3\cdot37\cdot5\cdot199+2\cdot3^2\cdot13\cdot17}{2^3\cdot3\cdot83\cdot11\cdot181-2^4\cdot3\cdot83}=\frac{2\cdot3^2\cdot11\cdot20101}{2^3\cdot3^3\cdot13\cdot17\cdot83}=\frac{11\cdot20101}{2^2\cdot3\cdot13\cdot17\cdot83}\)

16 tháng 8 2019

\(a,x-7\frac{5}{8}=1\frac{1}{4}\)

=> \(x-\frac{61}{8}=\frac{5}{4}\)

=> \(x=\frac{5}{4}+\frac{61}{8}\)

=> \(x=\frac{10}{8}+\frac{61}{8}=\frac{71}{8}=8\frac{7}{8}\)

\(b,x+7\frac{5}{8}=9\frac{1}{4}\)

=> \(x+\frac{43}{5}=\frac{37}{4}\)

=> \(x=\frac{37}{4}-\frac{43}{5}=\frac{13}{20}\)

\(c,\left[x-7\frac{5}{8}\right]:\frac{1}{2}=3\)

=> \(\left[x-\frac{61}{8}\right]=3\cdot\frac{1}{2}\)

=> \(\left[x-\frac{61}{8}\right]=\frac{3}{2}\)

=> \(x-\frac{61}{8}=\frac{3}{2}\)

=> \(x=\frac{3}{2}+\frac{61}{8}=\frac{12}{8}+\frac{61}{8}=\frac{73}{8}=9\frac{1}{8}\)

d, \(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+\frac{x}{5\cdot7}+...+\frac{x}{97\cdot99}=99\)

=> \(\frac{x}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right]=99\)

=> \(\frac{x}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=99\)

=> \(\frac{x}{2}\left[1-\frac{1}{99}\right]=99\)

=> \(\frac{x}{2}\cdot\frac{98}{99}=99\)

=> \(\frac{98x}{198}=99\)

=>  98x = 99 . 198

=> 98x = 19602

=> x = 19602 : 98 = 9801/49

16 tháng 8 2019

a) \(x-7\frac{5}{8}=1\frac{1}{4}\)

=> \(x=\frac{5}{4}+\frac{61}{8}\)

=> \(x=\frac{71}{8}\)

b) \(x+7\frac{5}{8}=9\frac{1}{4}\)

=> \(x=\frac{37}{4}-\frac{61}{8}\)

=> \(x=\frac{13}{8}\)

c) \(\left(x-7\frac{5}{8}\right):\frac{1}{2}=3\)

=> \(x-\frac{61}{8}=3.\frac{1}{2}\)

=> \(x-\frac{61}{8}=\frac{3}{2}\)

=> \(x=\frac{3}{2}+\frac{61}{8}\)

=> \(x=\frac{73}{8}\)

d) \(\frac{x}{1.3}+\frac{x}{3.5}+...+\frac{x}{97.99}=99\)

=> \(x.\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)=99\)

=> \(\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)=99\)

=> \(x\left(1-\frac{1}{99}\right)=99:\frac{1}{2}\)

=> \(x.\frac{98}{99}=198\)

=> \(x=198:\frac{98}{99}=\frac{9801}{49}\)

22 tháng 4 2017

\(A=\dfrac{1}{2.5}+\dfrac{1}{3.5}+\dfrac{1}{3.7}+...+\dfrac{1}{9.19}+\dfrac{1}{10.19}\)

\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{18.19}+\dfrac{2}{19.20}\)

\(A=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\)

\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{20}\right)\)

\(A=2.\dfrac{1}{5}\)

\(A=\dfrac{2}{5}\)