Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x - 13 = 612
5x = 612 + 13
5x = 625
x = 625 : 5
x = 125
Vậy x = 125
5x-1-13=612
5x-1=612+13
5x-1=625
5x=625+1
5x=626
x=626:5
x=125,2
a) (2x - 5)3 = 27
(2x - 5)3 = 33
2x - 5 = 3
2x = 8
x = 4
b) 5x + 3 - 13 = 612
5x + 3 = 625
5x + 3 = 54
x + 3 = 4
x = 1
(x-5)^6 = (x-5)^4
(x-5)^4 * (x-5)^2 = (x-5)^4
(x-5)^2= (x-5)^4 :(x-5)^4
(x-5)^2 = 1
Nếu x-5 = 1 thì x= 1+5 =6
Nếu x-5 = -1 thì x= -1 +5 = 4
Vậy x=4; 6
(x - 5)4 = (x - 5)6
x - 5 = 0 hoặc x - 5 = 1
x =5 x = 6
vậy: x = 5 hoặc x = 6
Đặt S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10
Xét 1010 số S1;S2;S3;...:S10S1;S2;S3;...:S10 ta có 2 trường hợp:
(∗)(∗) Nếu có 1 số SkSk nào có tận cùng =0(Sk=a1;a2;...;a10;k=1→10)=0(Sk=a1;a2;...;a10;k=1→10)
⇒⇒ Tổng kk số a1;a2;...;ak⋮10a1;a2;...;ak⋮10
(∗)(∗) Nếu không có số nào trong 10 số S1;S2;...;S10S1;S2;...;S10 tận cùng bằng 00
⇒⇒ Chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau. Ta gọi 2 số đó là Sm;Sn(1≤m<n≤10)Sm;Sn(1≤m<n≤10)
Sm=a1+a2+...+amSm=a1+a2+...+am
Sn=a1+a2+...+am+am+1+...+anSn=a1+a2+...+am+am+1+...+an
⇒Sn−Sm=am+1+am+2+...+an⇒Sn−Sm=am+1+am+2+...+an tận cùng là 0
⇒n−m=am+1+am+2+...+an⋮10⇒n−m=am+1+am+2+...+an⋮10
Vậy a1+a2+...+a10⋮10a1+a2+...+a10⋮10 (Đpcm)
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10
(đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng
giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
\(2^{x+3}+2^x=144\)
\(\Rightarrow2^x.2^3+2^x.1=144\)
\(\Rightarrow2^x.\left(2^3+1\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=144:9\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
Bài 1:
a) \(x^{10}=1^x\Rightarrow\orbr{\begin{cases}x=1\\x=10\end{cases}}\)
b) \(x^{10}=x\Rightarrow x=1\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\left(2x-15\right)^5.\left(2x-15\right)^3=\left(2x-15\right)^3\)
\(\left(2x-15\right)^2=1\Rightarrow x=8\)
Bài 2:
\(a;2^{16}=2^{13}\cdot2^3=2^{13}\cdot8>7\cdot2^{13}\)
\(b;49^8\cdot27^5=7^{16}\cdot3^{15}=21^{15}\cdot7>21^5\)
C;Ta có:\(199^{20}< 200^{20}=2^{20}\cdot10^{40}=2^{15}\cdot10^{40}\cdot2^5\)
\(2003^{15}>2000^{15}=2^{15}\cdot10^{45}=2^{15}\cdot10^{40}\cdot10^5\)
Vì 25<105 nên 19920<200315
\(d;3^{39}< 3^{40}=9^{20}< 11^{20}< 11^{21}\)
\(5^{x-1}-13=612\)
\(\Leftrightarrow5^{x-1}=625\)
\(\Leftrightarrow5^{x-1}=5^4\)
\(\Leftrightarrow x-1=4\)
\(\Leftrightarrow x=5\)