K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

555555555555555*5

Trời,hỏi vậy mà cũng hỏi

22 tháng 12 2016

5555555555 : 5 + 342 - 65 : 78 =1111111452

K NHA MK LÀ NGƯỜI TRẢ LỜI ĐẦU ĐÓ

22 tháng 12 2016

1111111452

9 tháng 3 2018

a)\(A=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^2^5}\)    <=>\(5A=1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{24}}\)

                                                             <=>\(5A-A=(1+\frac{1}{5}+...+\frac{1}{5^{24}})-(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{25}})\)

                                                             <=>\(4A=1-\frac{1}{5^{25}}\)  <=>\(A=\frac{(5^{25^{ }}-1)}{5^{25}}\div4\)

13 tháng 8 2017

Ta có:

\(C= 4+44+444+......+4444444444\)

\(C= 4.(10.1+9.10+8.100+7.1000+...+1.1000000000\)

\(C= 4.(100+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000)\)

\(C=4.12345678900\)

\(C=4938271600\)

Tương tự.

24 tháng 11 2015

n 2+n+1 = n﴾n + 1﴿ +1

. Vì n﴾n+1﴿ là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6

Do đó n﴾n+1﴿ + 1 có chữ số tận cùng là 1, 3, 7.

Vì 1, 3, 7 không chia hết cho 2 và 5 nên n﴾n+1﴿ + 1 không chia hết cho 4 và 5

Vậy n 2+n+1 không chia hết cho 4 và 5.

8 tháng 8 2017

Sử dụng phương pháp phản chứng 
Giả sử n chia hết cho 5 
=>n có dạng 5k 
=>\(\text{n}^2+\text{n}+1=25k^2+5k+1=5k\left(5k+1\right)+1\)
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5 
=>25k^2+5k+1 ko chia hết cho 5

(đpcm)

8 tháng 8 2017

 \(\text{n^2+n+1 = n(n+1) +1 }\)
vì n(n+1) luôn là số chẵn suy ra n(n+1)+1 luôn lẻ --> ko chia hết cho 4