Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD: áp dụng BĐT Cô-si cho 3 số hạng trên, khi đó trong căn sẽ triệt tiêu các tổng suy ra đpcm
Áp dụng BĐT Cô-si ta có:
\(1+x^3+y^3\ge3\sqrt[3]{1.x^3.y^3}=3xy\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{3xy}\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}\)
Tương tự:\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz};\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3zx}}{zx}\)
Công vế với vế của 3 BĐT trên ta đươc:
\(P\ge\frac{\sqrt{3xy}}{xy}+\frac{\sqrt{3yz}}{yz}+\frac{\sqrt{3zx}}{zx}=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\) \(=\sqrt{3}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\sqrt{3}\)
Dấu '='xảy ra khi \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy \(P_{min}=3\sqrt{3}\)khi \(x=y=z=1\)
:))
\(1=2\sqrt{xy}+\sqrt{xz}\le x+y+\dfrac{1}{2}\left(x+z\right)=\dfrac{1}{2}\left(3x+2y+z\right)\)
\(\Rightarrow3x+2y+z\ge2\)
BĐT cần chứng minh tương đương:
\(\dfrac{5xy}{z}+\dfrac{4xz}{y}+\dfrac{3yz}{x}\ge4\)
Ta có:
\(VT=3\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)
\(VT\ge3.2\sqrt{\dfrac{x^2yz}{yz}}+2.2\sqrt{\dfrac{xy^2z}{xz}}+2\sqrt{\dfrac{xyz^2}{xy}}=2\left(3x+2y+z\right)\ge2.2=4\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(VT\ge3\sqrt[3]{\dfrac{x^3y^3z^3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}=3xyz\) (dpcm)
\(A=\dfrac{\sqrt{x^3+y^3+1}}{xy}+\dfrac{\sqrt{y^3+z^3+1}}{yz}+\dfrac{\sqrt{z^3+x^3+1}}{zx}\)
\(\dfrac{\sqrt{x^3+y^3+1}}{xy}=\dfrac{\sqrt{x^3+y^3+xyz}}{xy}\ge\dfrac{\sqrt{xy\left(x+y\right)+xyz}}{xy}=\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}\ge\dfrac{\sqrt{xy.3^3\sqrt{xyz}}}{xy}=\dfrac{\sqrt{3xy}}{xy}=\dfrac{\sqrt{3}}{\sqrt{xy}}\)
\(\dfrac{\sqrt{y^3+z^3+1}}{yz}\ge\dfrac{\sqrt{3}}{\sqrt{yz}}\)
\(\dfrac{\sqrt{z^3+x^3+1}}{zx}\ge\dfrac{\sqrt{3}}{\sqrt{zx}}\)
\(\Rightarrow A\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.xz}}}=3\sqrt{3}.\sqrt[3]{\dfrac{1}{xyz}}=3\sqrt{3}\)
Áp dụng BĐT Bunhiacôpxki:
\(1=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\le\left(x+y+z\right)\left(x+y+z\right)\)
\(\Rightarrow x+y+z\ge1\)
\(T=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(x=y=z=\frac{1}{3}\)
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Ai giải đc cho 5 k và được kết bạn.(thực ra mình lớp 4,đọc tạp chí pi bố mik cũng không hiểu gì luôn.)