Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt P= \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\) : \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
Có : \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\)
= \(\dfrac{\left(2.5-9\right).5^{21}}{\left(5^2\right)^{10}}\)= \(\dfrac{\left(10-9\right).5^{21}}{5^{20}}\)=\(\dfrac{5^{21}}{5^{20}}\)= 5 (1)
Có: \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
= \(\dfrac{5.\left[7^{14}.\left(3.7-19\right)\right]}{\left[7^{15}.\left(3+7\right)\right]}\)=\(\dfrac{5.7^{14}.2}{7^{15}.10}\)=\(\dfrac{10.7^{14}}{7^{15}.10}\)=\(\dfrac{1}{7}\) (2)
Từ (1) và (2) suy ra:
A= 5:\(\dfrac{1}{7}\)=5.7=35
Vậy A=35 hay \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\):\(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)= 35
\(\Leftrightarrow5^x\cdot625-3\cdot5^x\cdot125=2\cdot5^{11}\)
\(\Leftrightarrow5^x\cdot250=2\cdot5^{11}\)
\(\Leftrightarrow5^x=5^8\)
hay x=8
Ta có:\(5^{x+4}-3\cdot5^{x+3}=2\cdot5\)
\(5^x\cdot5^4-3\cdot5^x\cdot5^3=10\)
\(5^x\left(5^4-3\cdot5^3\right)=10\)
\(5^x\cdot250=10\)
\(5^x=10:250\)
\(5^x=\frac{1}{25}\)
\(5^x=5^{-2}\)
\(\Rightarrow x=-2\)
\(5^{x+4}-3.5^{x+3}=2.5\)
\(\Rightarrow5^{x+3}.5-3.5^{x+3}=2.5\)
\(\Rightarrow5^{x+3}.\left(5-3\right)=2.5\)
\(\Rightarrow5^{x+3}.2=2.5\)
\(\Rightarrow5^{x+3}=5\)
\(\Rightarrow x+3=1\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)
5+2.5+3.5+...+8.5+9.5
=5.(1+2+3+...+8+9)
=5.\(\frac{\left(9+1\right).9}{2}\)
=5.45
=225