Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ 3(x - 2) = 9 => x - 2 = 3 => x = 5
2/ 3(x - 36) = 216 => x - 36 = 72 => x = 108
3/ (x - 3)3 = 33 => x - 3 = 3 => x = 6
4/ 2x = 32 => 2x = 25 => x = 5
5/ 3x - 16 = 2.74 : 73 = 14 => 3x = 30 => x = 10
6/ (6x - 39) : 3 = 201 => 6x - 39 = 603 => 6x = 642 => x = 107
7/ (3x - 15)2 = 81 => (3x - 15)2 = 92 => 3x - 15 = 9 => 3x = 24 => x = 8
8/ 3(x + 4) = 105 => x + 4 = 35 => x = 31
9/ 12x - 43 = 4.84 : 83 = 32 => 12x = 32 : 64 => 12x = 1/2 => x = 1/24
10/ 41 - (2x - 5) = 680 => 2x - 5 = -639 => 2x = -634 => x = - 317
3\(^x\) . 3 = 43
=> 3\(^{\left(x+1\right)}\) = 43
=> Không có giá trị x thoả mãn .
49 . \(7^x\) = 2041
7\(^2\) . 7\(^x\) = 2041
7\(^{\left(x+2\right)}\) = 2041
=> \(7^{\left(x+2\right)}\) = 7\(^4\)
=> x + 2 = 4
=> x = 2
a)23 .2x=128
=>23+x=128
=>23+x=27
=>3+x=7
=>x=4
b)2x+2x+3=144
=>2x(1+23)=144
=>2x*9=144
=>2x=16
=>2x=24
=>x=4
c)x-287:285=125
=>x-287-85=125
=>x-4=125
=>x=129
d)3x+4-3x=720
=>3x(34-1)=720
=>3x*80=720
=>3x=9
=>3x=32
=>x=2
e)812x:27x=95
=>(34)2x:(33)x=95
=>38x:33x=95
=>38x-3x=(32)5
=>35x=310
=>5x=10
=>x=2
a) \(\frac{18^4.3^2.8^3}{27^3.16^2}=\frac{\left(2.3^2\right)^4.3^2.\left(2^3\right)^3}{\left(3^3\right)^3.\left(2^4\right)^2}=\frac{2^4.2^9.3^8.3^2}{3^9.2^8}=\frac{2^{13}.3^{10}}{3^9.2^8}=3.2^5=96\)
b) \(\frac{35^5.9^3.8^5}{81^4.32^5}=\frac{35^5.\left(3^2\right)^3.\left(2^3\right)^5}{\left(3^4\right)^4.\left(2^5\right)^5}=\frac{35^5.3^6.2^{15}}{3^{16}.2^{25}}=\frac{35^5}{3^{10}.2^{10}}=\frac{35^5}{6^{10}}\)
c) \(\frac{48^5.18^2}{81^2.34^4}=\frac{\left(2^4.3\right)^5.\left(2.3^2\right)^2}{\left(3^4\right)^2.\left(2.17\right)^4}=\frac{2^{20}.3^5.2^2.3^4}{3^8.2^4.17^4}=\frac{2^{22}.3^9}{3^8.2^4.17^4}=\frac{2^{18}.3}{17^4}\)
d) \(\frac{54^7.27^3.16^2}{243^2.64^3}=\frac{\left(2.3^3\right)^7.\left(3^3\right)^3.\left(2^4\right)^2}{\left(3^5\right)^2.\left(2^6\right)^3}=\frac{2^7.3^{21}.3^9.2^8}{3^{10}.2^{18}}=\frac{2^{15}.3^{30}}{3^{10}.2^{18}}=\frac{3^{20}}{2^3}\)
2x : 2 = 256
2x = 256 x 2
2x = 512
=> 2x = 29
=> x = 9
\(2^x:2=256\)
\(2^x=256×2 \)
\(2^x=512\)
\(\Rightarrow2^x=2^9\)
\(X=9\)
a) \(5^x.5^2=3^2+4^2\Leftrightarrow5^x.5^2=25\)
\(\Leftrightarrow5^x=\frac{25}{5^2}=1=5^0\Rightarrow x=0\)
b) \(\left(x-2\right)^3=27\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
c) \(2018^{x-9}=1\). Ta có: \(2018^0=1\) nên để \(2018^{x-9}=1\) thì \(x-9=0\Leftrightarrow x=9\)
a/ => x3 = 64 => x3 = 43 => x = 4
b/ => x5 = 32 => x5 = 25 => x = 2
c/ => 3x = 81 => 3x = 34 => x = 4
d/ => 3x+2 = 243 => 3x+2 = 35 => x + 2 = 5 => x = 3
e/ => (x - 2)3 = 64 => (x - 2)3 = 43 => x - 2 = 4 => x = 6
f/ => (x - 8)2 = 81 => (x - 8)2 = 92 => x - 8 = 9 => x = 17