Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
1)⇔x2+1x-3x+3=0
⇔x(x+1)-3(x+1)=0
⇔(x+1)(x-3)=0
⇔x+1=0 hoặc x-3=0
⇔x=-1 hoặc x=3
4)⇔x(1+5x)=0
⇔x=0 hoặc 1+5x=0
⇔x=0 hoặc 5x=-1
⇔x=0 hoặc x=-0.2
Mình giải từ cuối lên , mình giải dần -)
n, <=> x(2x-1)-3(2x-1)=0
<=> (x-3)(2x-1)=0
<=> x= 3 hoặc x= 1/2
m, <=> (x+2)(x2-3x+5)-x2(x+2)=0
<=> (x+2)(x2-3x+5-x2)=0
<=> (x+2)(5-3x)=0
=> x= -2 hoặc5/3
a) 2x (x-5) -(x2-10x +25)=0
\(\Leftrightarrow\)2x(x-5)-(x-5)2=0
\(\Leftrightarrow\)(x-5)(2x-x+5)=0
\(\Leftrightarrow\)(x-5)(x+5)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
b) x2 - 9 +3x(x+3) = 0
\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0
\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0
\(\Leftrightarrow\)(x+3)(x-3+3x)=0
\(\Leftrightarrow\)(x+3)(4x-3)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)
c) x3 - 16x = 0
\(\Leftrightarrow\)x(x2-16)=0
\(\Leftrightarrow\)x(x-4)(x+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) (2x+3)(x-2) - (x2 -4x+4) = 0
\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0
\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0
\(\Leftrightarrow\)(x-2)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
e) 9x2 -(x2 -2x +1)=0
\(\Leftrightarrow\)(3x)2-(x-1)2=0
\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0
\(\Leftrightarrow\)(2x+1)(4x-1)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
f)x3-4x2 -9x +36 = 0
\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0
\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0
\(\Leftrightarrow\)(x-4)(x2-9)=0
\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
g) 3x - 6 = (x-1).(x-2)
\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)
\(\Leftrightarrow\)x-1=3
\(\Leftrightarrow\)x=4
i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)
k) x2 -1 = (x-1).(2x+3)
\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)
\(\Leftrightarrow\)x+1=2x+3
\(\Leftrightarrow\)x-2x=3-1
\(\Leftrightarrow\)-x=2
\(\Leftrightarrow\)x=-2
l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6
\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6
\(\Leftrightarrow\)6x-8=6
\(\Leftrightarrow\)6x=14
\(\Leftrightarrow\)x=\(\frac{7}{3}\)
1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)
\(\left(x+2\right)\left(2-3x-1\right)=0\)
\(\left(x+2\right)\left(1-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)
2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)
\(3x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)
3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)
\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)
\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)
\(\left(4-x\right)\left(5x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)
4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)
\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)
\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x+3-x-1\right)=0\)
\(\left(x-1\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)
5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)
\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)
\(\left(2x-3\right)\left(-2-x+3\right)=0\)
\(\left(2x-3\right)\left(1-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
6) \(2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(2x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)
7) \(x^2-x-12=0\)
\(x^2+3x-4x-12=0\)
\(x\left(x+3\right)-4\left(x+3\right)\)
\(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
8) \(3x^2+14x-5=0\)
\(3x^2+15x-x-5=0\)
\(3x\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(3x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
\(\left(2x-4\right)\left(1-3x\right)=0\)
<=> \(2\left(x-2\right)\left(1-3x\right)=0\)
<=> \(\orbr{\begin{cases}x-2=0\\1-3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}\)
Vậy....
\(\left(2x-4\right)\left(1-3x\right)=0\)
\(\Rightarrow2x-4=0\)hoặc\(1-3x=0\)
\(TH1:2x-4=0\)
\(2x=0+4\)
\(2x=4\)
\(x=4:2\)
\(x=2\)
\(TH2:1-3x=0\)
\(3x=1-0\)
\(3x=1\)
\(x=\frac{1}{3}\)
Vậy:\(x=2\)hoặc \(x=\frac{1}{3}\)
5/ (x2 – 4) + (x – 2)(4 – 2x) = 0
⇔(x-2)(x+2)+(x – 2)(4 – 2x)=0
⇔(x-2)(x+2+4-2x)=0
⇔(x-2)(6-x)=0
⇔\(\left[{}\begin{matrix}x-2=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
6/ x(2x – 7) – 4x + 14 = 0
⇔2x2-11x+14=0
⇔(x-\(\frac{7}{2}\))(x-2)=0
⇔\(\left[{}\begin{matrix}x-\frac{7}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
7/ x2 – x – (3x–3)= 0
⇔x2-4x+3=0
⇔(x-3)(x-1)=0
⇔\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
8/ (x2 – 2x + 1) – 4 = 0
⇔(x-1)2-4=0
⇔(x-1-4)(x-1+4)=0
⇔(x-5)(x+3)=0
⇔\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
9/ 4x2 + 4x + 1 = x2
⇔3x2+4x+1=0
⇔(3x+1)(x+1)=0
⇔\(\left[{}\begin{matrix}3x+1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-1\end{matrix}\right.\)
10/ x2 – x = - 2x + 2
⇔3x2-x-2=0 (chuyển vế)
⇔(3x+2)(x-1)=0
⇔\(\left[{}\begin{matrix}3x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=1\end{matrix}\right.\)
11/ x2 – 5x + 6 = 0
⇔x2-3x-2x+6=0
⇔x(x-3)-2(x-3)=0
⇔(x-3)(x-2)=0
⇔\(\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Mình làm bài khá tắt nên có gì không hiểu bạn cứ hỏi mình nha!
Cám ơn bn nha