Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+4}\)
\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+2}.\left(x-2\right)^2=0\)
\(\left(x-2\right)^{x+2}.\left[1-\left(x-2\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{x+2}=0\\1-\left(x-2\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x-2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=3\end{cases}}\)
1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)
\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)
\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)
\(=5x^4+2x^2+\dfrac{3}{16}\)
2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)
\(B=\frac{4^2.25^2+32.125}{2^3.5^2}\)
\(=\frac{\left(2^2\right)^2.\left(5^2\right)^2+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^3.5^2.\left(2.5^2+2^2.5\right)}{2^3.5^2}\)
\(=2.5^2+2^2.5\)
\(=2.25+4.5\)
\(=50+20\)
\(=70\)
Bài làm
\(B=\frac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\)
\(B=\frac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^2+2^5\cdot5^3}{2^3\cdot5^2}\)
\(B=\frac{2^4\left(5^2+2\cdot5^3\right)}{2^3.5^2}\)
\(B=\frac{2^4\left[5^2\left(1+2\cdot5\right)\right]}{2^3.5^2}\)
\(B=\frac{2^4\cdot5^2\cdot11}{2^3\cdot5^2}\)
\(B=2.11=22\)
Vậy B = 22
Câu 1:
Với \(x=11\Rightarrow12=x+1\) ta có: \(x^{17}-12x^{16}+12x^{15}-....+12x-1\)
\(=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-\left(x+1\right)x^{14}+...+\left(x+1\right)x-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...-x^3-x^2+x^2+x+1\)
\(=x+1\)
\(=12\)
Câu 2:
Do \(VT>0\Rightarrow VP>0\Rightarrow x>0\Rightarrow\) tất cả các biểu thức dưới dấu trị tuyệt đối đều dương, phương trình trở thành:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\frac{1+2+3+...+100}{101}=101x\)
\(\Rightarrow x=\frac{100.101}{2.101}=50\)
Câu 3:
\(A=n^3-n+3\left(n^2-1\right)=n\left(n^2-1\right)+3\left(n^2-1\right)\)
\(A=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Do n lẻ \(\Rightarrow n=2k+1\)
\(\Rightarrow A=\left(2k+4\right).2k.\left(2k+2\right)=8k.\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6
\(\Rightarrow A⋮\left(8.6\right)\Rightarrow A⋮48\)
\(\left(x+1\right)^2=\left(x+1\right)^4\)
\(\Rightarrow\left(x+1\right)^4-\left(x+1\right)^2=0\)
\(\Rightarrow\left(x+1\right)^2\left[\left(x+1\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x+1\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x+1=\pm1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\text{ or }x=-2\end{cases}}\)
*Đa thức \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)
Ta có: \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)
\(=-2x^3-2x^2-2+6x+2x^2-9x\)
\(=-2x^3-3x-2\)
*Đa thức \(C=x^3-2x\left(3x-1\right)+4\)
Ta có: \(C=x^3-2x\left(3x-1\right)+4\)
\(=x^3-6x^2+2x+4\)