Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì BD là tia phân giác của góc B suy ra:
góc ABD=góc EBD
Xét tam giác ABD và tam giác EBD có:
BA=BD(gt)
góc ABD=góc EBD(cmt)
BD chung
suy ra: tam giác ABD= tam giác EBD(cgc)
Vậy tam giác ABD= tam giác EBD
b,Vì tam giác ABD=tam giác EBD nên
góc BAD=góc BED(2 góc tương ứng)
mà góc BAD=90độ(tam giác ABC vuông tại A)
suy ra góc BED=90 độ
suy ra:DE vuông góc với BC
Câu c hình như đề bài sai
a) Xét tam giác ABD và EBD CÓ
BD chung, góc abd= góc ebd, BE=BA
do dố tam giác abd= tam giác ebd (c-g-c)
b) vì tam giác ABD= tam giác EBD do đó
góc A= góc E (2 góc tương ứng)
mà góc A=90 nên góc E=90
=>DE vuông góc BC
c) Xét tam giác ADF và tam giác EDC có
AD=DE (TAM GIÁC ABD= EBD), GÓC A=GÓC E=90, HAI GÓC D BẰNG NHAU VÌ ĐỐI ĐỈNH
DO ĐÓ TAM GIÁC ADF= TAM GIÁC EDC
=>DF=DC (2 CẠNH TƯƠNG ỨNG )
MÌNH ĐÁNH CAPSLOCK THÔNG CẢM
4) a.Ta có:
\(BA=BE\)
\(ABD=DBE\rightarrow\Delta ABD=\Delta EBDchungBD\)
b) Từ câu a \(\rightarrow BED=BAD=90^o\)
\(\rightarrow DE\text{⊥}BC\)
c) Ta có :
\(BKD=ADK=ACB+DEC=90^o\)
\(BKD=ACB\)
\(\text{Δ B D K = Δ B D C ( g . c . g )}\)
\(BK=BC\)
5)
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Mà \(8< 9\Rightarrow2^{300}< 3^{200}\)
Bài 5:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\\ 3^{200}=\left(3^2\right)^{100}=9^{100}\\ Vì:8< 9\Rightarrow8^{100}< 9^{100}\\ \Rightarrow2^{300}< 3^{200}\)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: AK=EC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE
và AK=EC
nên BK=BC
Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(AB=EB\)(giả thiết)
\(\widehat{ABD}=\widehat{EBD}\)(vì \(BD\)là phân giác của \(\widehat{ABC}\))
\(BD\)cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\)(c.g.c)
\(\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)(Hai góc tương ứng)
\(\Rightarrow DE\perp BC\).
a.Ta có:
⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)
b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o
→DE⊥BC→DE⊥BC
c.Ta có:
ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o
→ˆBKD=ˆACB→BKD^=ACB^
→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)
→BK=BC→BK=BC
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: AK=EC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE
và AK=EC
nên BK=BC