K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

\(4x\left(2x^2-1\right)+27=\left(4x^2+6x\right)\left(2x+3\right)\)

<=> \(2x\left[2\left(2x^2-1\right)\right]=2x\left(2x+3\right)\left(2x+3\right)\)

<=> \(2x\left(4x^2-2\right)=2x\left(2x+3\right)^2\)

<=> \(2x\left(4x^2-2\right)-2x\left(2x+3\right)^2=0\)

<=> \(2x\left(4x^2-2\right)-2x\left(4x^2+12x+6\right)=0\)

<=> \(2x\left(4x^2-2-4x^2+12x+6\right)=0\)

<=> \(2x\left(12x-4\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\12x-4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)

Ta có: \(4x\left(2x^2-1\right)+27=\left(4x^2+6x+9\right)\left(2x+3\right)\)

\(\Leftrightarrow8x^3-4x+27=8x^3+12x^2+12x^2+18x+18x+27\)

\(\Leftrightarrow8x^3-4x+27-8x^3-24x^2-36x-27=0\)

\(\Leftrightarrow-24x^2-40x=0\)

\(\Leftrightarrow-8x\left(3x+5\right)=0\)

mà -8≠0

nên \(\left[{}\begin{matrix}x=0\\3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-5}{3}\right\}\)

13 tháng 7 2017

a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)

\(=x^3+14x^2+27x+51\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)

\(=8x^3+18-8x^3+18=36\)

c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)

\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)

\(=64x^5-1\)

d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)

\(=x^3-x^2+14\)

Chúc bạn học tốt!!!

13 tháng 7 2017

Cảm ơn nha !!!

a: \(\Leftrightarrow8x^3-4x+27=8x^3+8x^2+12x^2+12x+18x+18\)

\(\Leftrightarrow8x^3+20x^2+30x+18=8x^3-4x+27\)

\(\Leftrightarrow20x^2+34x-9=0\)

hay \(x\in\left\{\dfrac{-17+\sqrt{469}}{20};\dfrac{-17-\sqrt{469}}{20}\right\}\)

b: \(\Leftrightarrow20x^2-16x-1=10x^2-2x+5x-1=10x^2+3x-1\)

\(\Leftrightarrow10x^2-19x=0\)

=>x=0 hoặc x=19/10

6 tháng 11 2018

câu b sai đề r

7 tháng 10 2017

câu a sai đề đúng ko, mik sửa lại nhé

a. (4x2 - 9):(2x - 3)

= (2x + 3)(2x - 3): (2x - 3)

= 2x + 3

b. (8x3 - 27):(4x2 + 6x + 9)

= (2x - 3)(4x2 + 6x + 9):(4x2 + 6x + 9)

= 2x - 3

\(a)\)

\(4x^2-y^2+2x+y\)

\(=\left(4x^2-y^2\right)+\left(2x+y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)\)

\(=\left(2x+y\right)\left(2x-y+1\right)\)

\(b)\)

\(x^3+2x^2-6x-27\)

\(=x^3+5x^2+9x-3x^2-15x-27\)

\(=x\left(x^2+5x+9\right)-3\left(x^2+5x-9\right)\)

\(=\left(x-3\right)\left(x^2+5-9\right)\)

\(c)\)

\(12x^3+4x^2-27x-9\)

\(=\left(12x^3+4x^2\right)-\left(27x+9\right)\)

\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)

\(=\left(3x+1\right)\left(4x^2-9\right)\)

\(=\left(3x+1\right)[\left(2x\right)^2-3^2]\)

\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)

\(d)\)

\(16x^2+4x-y^2+y^2\)

\(=16x^2+4x\)

\(4x\left(4x+1\right)\)

\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)

\(TH1:3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)

\(TH2:x+6=0\Leftrightarrow x=-6\)

\(TH3:x^2+5=0\Leftrightarrow x^2=5\Leftrightarrow x=\sqrt{5}\)( ns vô nghiệm cx ko sai nha ) 

\(\left(2x+5\right)^2=\left(3x-1\right)^2\)

\(2x+5=3x-1\)

\(2x-3x=-1-5\)

\(-1x=-6\)

\(x=6\)

11 tháng 7 2021

\(\left(x^2+3\right)\left(3-x^2\right)\)

\(\left(x^2+3\right)\left(-x^2+3\right)\)

\(\left(-x^2+3\right).x^2+3\left(-x^2+3\right)\)

\(-x^2.x^2+3x^2+3\left(-x^2+3\right)\)

\(-x^2.x^2+3x^2-3x^2+9\)

\(-x^2.x^2+9\)

11 tháng 7 2021

\(\left(2x+5\right)\left(2x-5\right)\)

\(2x\left(2x-5\right)+5\left(2x-5\right)\)

\(4x^2-10x+5\left(2x-5\right)\)

\(4x^2-10x+10x-25\)

\(4x^2-25\)