Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x\left(2x^2-1\right)+27=\left(4x^2+6x+9\right)\left(2x+3\right)\)
\(\Leftrightarrow8x^3-4x+27=8x^3+12x^2+12x^2+18x+18x+27\)
\(\Leftrightarrow8x^3-4x+27-8x^3-24x^2-36x-27=0\)
\(\Leftrightarrow-24x^2-40x=0\)
\(\Leftrightarrow-8x\left(3x+5\right)=0\)
mà -8≠0
nên \(\left[{}\begin{matrix}x=0\\3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-5}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{-5}{3}\right\}\)
8x3+12x2+18x-12x2-18x-27=8x2-4x-27
8x3-8x2+4x=0
8x2.x-8x2+4x=0
x+4x=0
5x=0
=> x=0
nhớ k nha
1.A =( x-3)( x+3) + 15 - x2
A=X2-3X+3X+15-X3
A=15-X
2.B=(X -1) (X2+X+1) - X (X2+2) + 2X
B=X3+ X2+ X - X2 - X - 1 - X3 - 2X + 2X
B= -1
3.C=(2X - 1 ) (4X2 + 2X + 1) - X ( 8 X 2 + 1 ) + X
C=8X3 - 4X2 +4X2 - 2X +2 X - 1 - 8X22 - X + X
C=8X3 - 1 - 8X22
MK CHỈ LM ĐC TỚI ĐÓ THUI SAI CHỖ NÀO ĐỪNG TRÁCH VÌ MK YẾU PHẦN NÀY
a) (x2-6xy+9y2):(3y-x)
= (x-3y)2:(3y-x)
=(3y-x)2:(3y-x)
= 3y-x
b) (8x3-1):(4x2+2x+1)
=[(2x)3-1]:(4x2+2x+1)
= (2x-1)(4x2+2x+1):(4x2+2x+1)
= 2x-1
c) (4x4-9):(2x2-3)
=(2x2-3)(2x2+3):(2x2-3)
=2x2+3
d) (8x3-27):(4x2+6x+9)
=(2x-3)(4x2+6x+9):(4x2+6x+9)
=2x-3
a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)
\(=x^3+14x^2+27x+51\)
b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)
\(=8x^3+18-8x^3+18=36\)
c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)
\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)
\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)
\(=64x^5-1\)
d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)
\(=x^3-x^2+14\)
Chúc bạn học tốt!!!
a) 4x(3x-7)-6(2x2-5x+1)=12
=>4x.3x-4x.7-6.2x2-6.(-5x)-6.1=12
=>12x2-28x-12x2+30x-6=12
=>2x-6 =12
=>2x =12+6
=>2x =18
=>x =18:2
=>x =6
b)(5x+3)(4x-1)+(10x-7)(-2x+3)=27
=>5x.4x-5x.1+3.4x+3.(-1)+10x.(-2x)+10x.3-7.-(2x)-7.3=27
=>20x2-5x+12x-3-20x2+30x+14x-21=27
=>39x-36 =27
=>39x =27+36
=>39x =63
=>x =63:39
=>x =21/13
c) (8x-5)(3x+2)-(12x+7)(2x-1)=17
=>8x.3x+8x.2-5.3x-5.2-12x.2x-12x.(-1)+7.2x+7.(-1)=17
=>24x2+16x-15x-10-24x2+12x+14x-7=17
=>27x-17 =17
=>27x =17+17
=>27x =34
=>x =34:27
=>x =34/27
d) (5x+9)(6x-1)-(2x-3)(15x+1)=-190
=>30x2-5x+63x-9 - 30x2-2x-45x-3=-190
=>11x-12 =-190
=>11x =-190+12
=>11x =-178
=>x = -178:11
=>x =-178/11
\(4x\left(2x^2-1\right)+27=\left(4x^2+6x\right)\left(2x+3\right)\)
<=> \(2x\left[2\left(2x^2-1\right)\right]=2x\left(2x+3\right)\left(2x+3\right)\)
<=> \(2x\left(4x^2-2\right)=2x\left(2x+3\right)^2\)
<=> \(2x\left(4x^2-2\right)-2x\left(2x+3\right)^2=0\)
<=> \(2x\left(4x^2-2\right)-2x\left(4x^2+12x+6\right)=0\)
<=> \(2x\left(4x^2-2-4x^2+12x+6\right)=0\)
<=> \(2x\left(12x-4\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\12x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
a: \(\Leftrightarrow8x^3-4x+27=8x^3+8x^2+12x^2+12x+18x+18\)
\(\Leftrightarrow8x^3+20x^2+30x+18=8x^3-4x+27\)
\(\Leftrightarrow20x^2+34x-9=0\)
hay \(x\in\left\{\dfrac{-17+\sqrt{469}}{20};\dfrac{-17-\sqrt{469}}{20}\right\}\)
b: \(\Leftrightarrow20x^2-16x-1=10x^2-2x+5x-1=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x=0\)
=>x=0 hoặc x=19/10
Bài giải
\(4x\left(2x^2-1\right)+27=\left(4x^2+6x+9\right)\left(2x+3\right)\)
\(8x^3-4x+27=8x^3+12x^2+18x+12x^2+18x+27\)
\(8x^3-4x+27=8x^3+24x^2+36x+27\)
\(8x^3-4x+27-8x^3-36x-27=24x^2\)
\(-40x=24x^2\)
\(\frac{3}{5}x^2=x\)
\(\frac{3}{5}x^2-x=0\)
\(x\left(\frac{3}{5}x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\frac{3}{5}x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\frac{3}{5}x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }\frac{5}{3}\right\}\)