Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x + 1) + (2x + 4) + (3x + 7)+...+(12x + 34) = 522
có số số hạng là :
( 34 - 1 ) : 3 + 1 = 12 ( số hạng )
tổng dãy số là :
( 34 + 1 ) x 12 : 2 = 210
( 1x + 2x + 3x + 4x + ..... + 12x ) + 210 = 522
78x + 210 = 522
78x = 312
x = 4
nha bạn
\(a,\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
vậy_____
1 < l x - 2 l < 4
=> l x - 2 l thuộc { 2 ; 3 }
=> x - 2 thuộc { - 3 ; - 2 ; 2 ; 3 }
=> x thuộc { - 1 ; 0 ; 4 ; 5 }
Vậy x thuộc { - 1 ; 0 ; 4 ; 5 }
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
\(\frac{1}{2}\times\left(x-\frac{4}{5}\right)+\frac{3}{4}x=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{2}{5}+\frac{3}{4}x=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{3}{4}x=\frac{5}{12}+\frac{2}{5}\)
\(\Leftrightarrow\frac{5}{4}x=\frac{49}{60}\)
\(\Leftrightarrow x=\frac{49}{75}\)
Vậy \(x=\frac{49}{75}\)
\(\left(3x-4\right)\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(3x-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-1\end{cases}}\)
3x/2.5 + 3x/5.8 + 3x/8.11 + 3x/11.14 = 1/21
=> x . ( 3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 ) = 1/21
=> x . ( 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 ) = 1/21
x . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 ) = 1/21
x . ( 1/2 - 1/14 ) = 1/21
x . 3/7 = 1/21
x = 1/21 : 3/7
=> x = 1/9
\(\frac{3x}{2\cdot5}+\frac{3x}{5\cdot8}+\frac{3x}{8\cdot11}+\frac{3x}{11\cdot14}=\frac{1}{21}\)
<=> \(x\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\cdot\frac{3}{7}=\frac{1}{21}\)
<=> \(x=\frac{1}{9}\)
\(\frac{1}{3}+....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)
=>\(\frac{1}{2}.\left(\frac{1}{3}+...+\frac{2}{x.\left(x+1\right)}\right)=\frac{1999}{2001}.\frac{1}{2}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2001}\)
=> x=2000
Tìm stn biết: 1/3 + 1/6 + 1/10 + ...+2/x(x+1)=1999/2001
Bài giải: Gọi x là số tự nhiên cần tìm
Cho S= 1/3 + 1/6 +1/10 +...+ 1/x(x+1)
\(\Rightarrow\)S= 2/6 + 2/12+ 2/20 +...+ 2/2[x(x+1)]
\(\Rightarrow\)1/2S= 1/2.3 + 1/3.4 + 1/ 4.5 +...+1/2[x(x+1)]
\(\Rightarrow\)1/2S=1/2-1/3+1/3-1/4+...+1/(x-1) .(x+1)
\(\Leftrightarrow\)1/2S=1/2-1/x+1
Vì S = 1999 / 2001\(\Rightarrow\)1/2S=1/2-1 . (x+1)=1999/2001-1998-2001=1/2001
\(\Rightarrow\)1/x+1=1/2001
\(\Leftrightarrow\)x+1=2001
x =2001-1 =2000
Vậy số tự nhiên đó là: 2000
4(x+1)-(3x+1)=14
4x+4-3x-1=14
4x-3x+4-1=14
1x+3=14
x =14-3
x =11