Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:
Từ a^2k+b^2k/c^2k+d^2k =a^2k-b^2k/c^2k-d^2k (K THUỘC N)
Ta có thể suy ra a/b = +-c/d
a) Đặt\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=k.\)
Ta có : x = 5k ; y = 2k ; z = 3k và xyz = 240
=> 5k . 2k . 3k = 240
=> k3 . 30 = 240
=> k3 = 8
=> k = 2
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=2\Leftrightarrow x=10\\\frac{y}{2}=2\Leftrightarrow y=4\\\frac{z}{3}=2\Leftrightarrow x=6\end{cases}}\)
Vậy : x = 10; y = 4; z = 6
b) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2-z^2}{16-9-4}=\frac{12}{3}=4\)
Suy ra :
\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)
\(\frac{z^2}{4}=4\Leftrightarrow z^2=16\Leftrightarrow z=\pm4\)
Vậy \(\hept{\begin{cases}x=8\\y=6\\z=4\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-4\end{cases}}\)
c) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}=\frac{200}{50}=4\)
Suy ra :
\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)
\(\frac{z^2}{25}=4\Leftrightarrow z^2=100\Leftrightarrow z=\pm10\)
Vậy :\(\hept{\begin{cases}x=8\\y=6\\z=10\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-10\end{cases}}\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a) Ta đặt: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{-2}=k\)
\(\Rightarrow x=4k;y=3k;z=-2k\)
\(\Rightarrow xyz=\left(4.3.-2\right).k^3\)
\(\Rightarrow xyz=\left(-24\right).k^3\)
\(\Rightarrow k^3=240:\left(-24\right)=-10\)
\(\Rightarrow\)(đề sai, không ra số tự nhiên)