Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có thể khẳng định ngay vì trong các tích a.d và b.c luôn có một tích dương và một tích âm
a, (sửa đề )
\(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{x.\left(x+1\right)}=\frac{1999}{2000}\)
=\(1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}\right)=\frac{1999}{2000}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x+\left(x+1\right)}=1-\frac{1999}{2000}=\frac{1}{2000}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2000}\)
=\(\frac{1}{1}-\frac{1}{x+1}=\frac{1}{2000}\)
=\(\frac{1}{x+1}=\frac{1}{1}-\frac{1}{2000}=\frac{1999}{2000}\)
=> \(x+1=1:\frac{1999}{2000}=\frac{2000}{1999}\)
=>\(x=\frac{2000}{1999}-1=\frac{1}{1999}\)
Vậy x ∈{ \(\frac{1}{1999}\)}
b, \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=>\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=>2.(\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2}{9}\)
=>\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x+\left(x+1\right)}=\frac{2}{9}:2=\frac{1}{9}\)
=>\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
=>\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
=>\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}\)
=>\(x+1=18\)
=>\(x=18-1=17\)
=>x∈{17}
=>4/x=y/21=4/7
=>x=7; y=12