Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(2x-1\right)\left(3x+2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-2}{3}\\x=5\end{matrix}\right.\)
\(\Rightarrow S=\left\{\dfrac{1}{2};\dfrac{-2}{3};5\right\}\)
b. \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)\)
\(\Leftrightarrow3x\left(x-4\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\Rightarrow S=\left\{0;4\right\}\)
c. \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)
\(\Leftrightarrow\left(4x-1\right)^2-4\left(x+3\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(4x-1-4x-3\right)=0\)
\(\Leftrightarrow-4\left(4x-1\right)=0\Leftrightarrow4x-1=0\Leftrightarrow x=\dfrac{1}{4}\)
d. \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)
\(\Leftrightarrow27x^2\left(x+3\right)-12x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(27x-12\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\27x-12=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\\x=-3\end{matrix}\right.\)
\(\Rightarrow S=\left\{0;\dfrac{4}{9};-3\right\}\)
e. \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+1-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\7x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-3}{7}\end{matrix}\right.\)
\(\Rightarrow S=\left\{\dfrac{-1}{3};\dfrac{-3}{7}\right\}\)
g. \(\left(2x-1\right)^2=49\)
\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)
Bài 1:
\(A=-x^2-2x+9\)
\(A=-\left(x^2+2x-9\right)\)
\(A=-\left(x^2+2x+1-10\right)\)
\(A=-\left(x+1\right)^2+10\)
Vì \(-\left(x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x+1\right)^2+10\le10\)
\(\Rightarrow Amax=10\Leftrightarrow x=-1\)
\(B=-9x^2+6x+25\)
\(B=-\left(9x^2-6x-25\right)\)
\(B=-\left[\left(3x\right)^2-2.3x+1-26\right]\)
\(B=-\left(3x-1\right)^2+26\)
Vì \(-\left(3x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(3x-1\right)^2+26\le26\)
\(\Rightarrow Bmax=26\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(C=-x^2+x+1\)
\(C=-\left(x^2-x-1\right)\)
\(C=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-1\right)\)
\(C=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)
Vì \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(\Rightarrow Cmax=\dfrac{5}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(D=-2x^2+3x+1\)
\(D=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)
\(D=-2\left(x^2-2.x\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{1}{2}\right)\)
\(D=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\)
Vì \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x
\(\Rightarrow-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\)
\(\Rightarrow Dmax=\dfrac{17}{8}\Leftrightarrow x=\dfrac{3}{4}\)
\(E=-25x^2-10x+7\)
\(E=-\left(25x^2+10x-7\right)\)
\(E=-\left[\left(5x\right)^2+2.5x+1-8\right]\)
\(E=-\left(5x+1\right)^2+8\)
Vì \(-\left(5x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(5x+1\right)^2+8\le8\)
\(\Rightarrow Emax=8\Leftrightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
Bài 2:
\(A=9x^2+6x+4\)
\(A=\left(3x\right)^2+2.3x+1+3\)
\(A=\left(3x+1\right)^2+3\)
Vì \(\left(3x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(3x+1\right)^2+3\ge3\)
\(\Rightarrow Amin=3\Leftrightarrow x=-\dfrac{1}{3}\)
\(B=4x^2+4x+12\)
\(B=\left(2x\right)^2+2.2x+1+11\)
\(B=\left(2x+1\right)^2+11\)
Vì \(\left(2x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+1\right)^2+11\ge11\)
\(\Rightarrow Bmin=11\Leftrightarrow x=-\dfrac{1}{2}\)
\(C=x^2+x+3\)
\(C=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
\(\Rightarrow Cmin=\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(D=2x^2+3x+1\)
\(D=2\left(x^2+\dfrac{3}{2}x+\dfrac{1}{2}\right)\)
\(D=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}+\dfrac{1}{2}\right)\)
\(D=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)
Vì \(2\left(x+\dfrac{3}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)
\(\Rightarrow Dmin=-\dfrac{1}{8}\Leftrightarrow x=-\dfrac{3}{4}\)
\(E=64x^2+16x+3\)
\(E=\left(8x\right)^2+2.8x+1+2\)
\(E=\left(8x+1\right)^2+2\)
Vì \(\left(8x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(8x+1\right)^2+2\ge2\)
\(\Rightarrow Emin=2\Leftrightarrow x=-\dfrac{1}{8}\)
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
1) Ta có: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)^2\)
\(\Leftrightarrow x^2+2x+5x+10-12x+9=25-10x+x^2\)
\(\Leftrightarrow x^2-5x+19-25+10x-x^2=0\)
\(\Leftrightarrow5x-6=0\)
\(\Leftrightarrow5x=6\)
\(\Leftrightarrow x=\frac{6}{5}\)
Vậy: \(x=\frac{6}{5}\)
2) Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)
\(\Leftrightarrow x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)=12x^2-12x-8\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2+12x+8=0\)
\(\Leftrightarrow12x+24=0\)
\(\Leftrightarrow12x=-24\)
\(\Leftrightarrow x=-2\)
Vậy: x=-2
3) Ta có: \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x-30=0\)
\(\Leftrightarrow15x-30=0\)
\(\Leftrightarrow15x=30\)
\(\Leftrightarrow x=2\)
Vậy: x=2
4) Ta có: \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-12x-20x+5+3x-48x^2-7+112x-81=0\)
\(\Leftrightarrow83x-83=0\)
\(\Leftrightarrow83x=83\)
\(\Leftrightarrow x=1\)
Vậy: x=1
bBài 52a giúp mk vs ạ
ĐKXĐ: \(x\ne0;1;2\)
\(\Leftrightarrow\frac{x\left(4x-7\right)}{x\left(x^2-3x+2\right)}=\frac{9x^2-16x+4}{x\left(x^2-3x+2\right)}\)
\(\Leftrightarrow4x^2-7x=9x^2-16x+4\)
\(\Leftrightarrow5x^2-9x+4=0\)
\(\Leftrightarrow\left(5x-4\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=1\left(l\right)\end{matrix}\right.\)